题目:用动态规划法实现求两序列的最长公共子序列。
程序代码
#include <iostream>
#include <cstring> //memset需要用到这个库
#include <algorithm>
using namespace std;
int const MaxLen = 50;
class LCS
{
public:
LCS(int nx, int ny, char *x, char *y) //对数据成员m、n、a、b、c、s初始化
{
m = nx; //对m和n赋值
n = ny;
a = new char[m + 2]; //考虑下标为0的元素和字符串结束标记
b = new char[n + 2];
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
for(int i = 0; i < nx + 2; i++) //将x和y中的字符写入一维数组a和b中
a[i + 1] = x[i];
for(int i = 0; i < ny + 2; i++)
b[i + 1] = y[i];
c = new int[MaxLen][MaxLen]; //MaxLen为某个常量值
s = new int[MaxLen][MaxLen];
memset(c, 0, sizeof(c)); //对二维数组c和s中元素进行初始化
memset(s, 0, sizeof(s));
}
int LCSLength(); //求最优解值(最长公共子序列长度)
void CLCS() //构造最优解(最长公共子序列)
{
CLCS(m, n); //调用私有成员函数CLCS(int,int)
}
private:
void CLCS(int i, int j);
int (*c)[MaxLen], (*s)[MaxLen];
int m, n;
char *a, *b;
};
int LCS::LCSLength()
{
for(int i = 1; i <= m; i++) //初始化行标或列标为0的元素
c[i][0] = 0;
for(int j = 1; j <= n; j++)
c[0][j] = 0;
for(int i = 1; i <= m; i++)
{
for(int j = 1; j <= n; j++)
{
if(a[i] == b[j]) //由c[i-1][j-1]得到c[i][j]
{
c[i][j] = c[i - 1][j - 1] + 1;
s[i][j] = 1;
}
else if(c[i - 1][j] >= c[i][j - 1]) //由c[i-1][j]得到c[i][j]
{
c[i][j] = c[i - 1][j];
s[i][j] = 2;
}
else //由c[i][j-1]得到c[i][j]
{
c[i][j] = c[i][j - 1];
s[i][j] = 3;
}
}
}
return c[m][n]; //返回最优解值
}
//构造最长公共子序列
void LCS::CLCS(int i, int j)
{
if(i == 0 || j == 0) //终止条件
return;
if(s[i][j] == 1)
{
CLCS(i - 1, j - 1);
cout << a[i]; //输出最优解的当前分量
}
else if(s[i][j] == 2)
CLCS(i - 1, j);
else
CLCS(i, j - 1);
}
int main()
{
int nx, ny;
char *x = new char[MaxLen], *y = new char[MaxLen];
cout << "Please input X:" << endl;
scanf("%s", x);
nx = strlen(x);
cout << "Please input Y:" << endl;
scanf("%s", y);
ny = strlen(y);
LCS lcs(nx, ny, x, y);
cout << "The LCSLength of X and Y is:" << lcs.LCSLength() << endl;
cout << "The CLCS is:" << endl;
lcs.CLCS();
cout << endl;
delete []x;
delete []y;
return 0;
}
实验结果
输入X序列:abcbdab
输入Y序列:bdcaba
最长公共子序列长度为:4
最长公共子序列为:
bcba