基本思想
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
算法原理
在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:
每个顶点出现且只出现一次。
若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。
例如,下面这个图:
它是一个 DAG 图,那么如何写出它的拓扑排序呢?这里说一种比较常用的方法:
从 DAG 图中选择一个 没有前驱(即入度为0)的顶点并输出。
从图中删除该顶点和所有以它为起点的有向边。
重复 1 和 2 直到当前的 DAG 图为空或当前图中不存在无前驱的顶点为止。后一种情况说明有向图中必然存在环。
于是,得到拓扑排序后的结果是 { 1, 2, 4, 3, 5 }。
通常,一个有向无环图可以有一个或多个拓扑排序序列。
应用
拓扑排序通常用来“排序”具有依赖关系的任务。
比如,如果用一个DAG图来表示一个工程,其中每个顶点表示工程中的一个任务,用有向边<A,B>表示在做任务 B 之前必须先完成任务 A。故在这个工程中,任意两个任务要么具有确定的先后关系,要么是没有关系,绝对不存在互相矛盾的关系(即环路)。
源代码
C++版本一
//b[]为每个点的入度
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
if(b[j]==0){ //找到一个入度为0的点
ans=j;
vis[cnt++]=j;
b[j]--;
break;
}
}
for(j=1;j<=n;j++)
if(a[ans][j]) b[j]--; //与入度为0的点相连的点的入度减一
}
printf("%d",vis[0]);
for(i=1;i<cnt;i++) printf(" %d",vis[i]);
printf("\n");
C++版本二
queue<int>q;
for(int i=0;i<n;i++) //n 节点的总数
if(in[i]==0) q.push(i); //将入度为0的点入队列
vector<int>ans; //ans 为拓扑序列
while(!q.empty())
{
int p=q.top(); q.pop(); // 选一个入度为0的点,出队列
ans.push_back(p);
for(int i=0;i<edge[p].size();i++)
{
int y=edge[p][i];
in[y]--;
if(in[y]==0)
q.push(y);
}
}
if(ans.size()==n)
{
for(int i=0;i<ans.size();i++)
printf( "%d ",ans[i] );
printf("\n");
}
else printf("No Answer!\n"); // ans 中的长度与n不相等,就说明无拓扑序列
C++版本三
#include<iostream>
#include <list>
#include <queue>
using namespace std;
/************************类声明************************/
class Graph
{
int V; // 顶点个数
list<int> *adj; // 邻接表
queue<int> q; // 维护一个入度为0的顶点的集合
int* indegree; // 记录每个顶点的入度
public:
Graph(int V); // 构造函数
~Graph(); // 析构函数
void addEdge(int v, int w); // 添加边
bool topological_sort(); // 拓扑排序
};
/************************类定义************************/
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
indegree = new int[V]; // 入度全部初始化为0
for(int i=0; i<V; ++i)
indegree[i] = 0;
}
Graph::~Graph()
{
delete [] adj;
delete [] indegree;
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
++indegree[w];
}
bool Graph::topological_sort()
{
for(int i=0; i<V; ++i)
if(indegree[i] == 0)
q.push(i); // 将所有入度为0的顶点入队
int count = 0; // 计数,记录当前已经输出的顶点数
while(!q.empty())
{
int v = q.front(); // 从队列中取出一个顶点
q.pop();
cout << v << " "; // 输出该顶点
++count;
// 将所有v指向的顶点的入度减1,并将入度减为0的顶点入栈
list<int>::iterator beg = adj[v].begin();
for( ; beg!=adj[v].end(); ++beg)
if(!(--indegree[*beg]))
q.push(*beg); // 若入度为0,则入栈
}
if(count < V)
return false; // 没有输出全部顶点,有向图中有回路
else
return true; // 拓扑排序成功
}
例题
http://acm.hdu.edu.cn/showproblem.php?pid=4857
参考文章
https://blog.csdn.net/qq_41713256/article/details/80805338
https://blog.csdn.net/lisonglisonglisong/article/details/45543451