内容来自莫烦Python的教程。很适合入门理解。
首先附上例子的代码:
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import time
np.random.seed(2) # reproducible
N_STATES = 10 # the length of the 1 dimensional world
ACTIONS = ['left', 'right'] # available actions
EPSILON = 0.9 # greedy police
ALPHA = 0.1 # learning rate
GAMMA = 0.9 # discount factor
MAX_EPISODES = 13 # maximum episodes
FRESH_TIME = 0.1 # fresh time for one move
def build_q_table(n_states, actions):
table = pd.DataFrame(
np.zeros((n_states, len(actions))), # q_table initial values
columns=actions, # actions's name
)
# print(table) # show table
return table
def choose_action(state, q_table):
# This is how to choose an action
state_actions = q_table.iloc[state, :]
if (np.random.uniform() > EPSILON) or ((state_actions == 0).all()): # act non-greedy or state-action have no value
action_name = np.random.choice(ACTIONS)
else: # act greedy
action_name = state_actions.idxmax() # replace argmax to idxmax as argmax means a different function in newer version of pandas
return action_name
def get_env_feedback(S, A):
# This is how agent will interact with the environment
if A == 'right': # move right
if S == N_STATES - 2: # terminate
S_ = 'terminal'
R = 1
else:
S_ = S + 1
R = 0
else: # move left
R = 0
if S == 0:
S_ = S # reach the wall
else:
S_ = S - 1
return S_, R
def update_env(S, episode, step_counter):
# This is how environment be updated
env_list = ['-']*(N_STATES-1) + ['🍺'] # '---------T' our environment
if S == 'terminal':
interaction = 'Episode %s: total_steps = %s' % (episode+1, step_counter)
print('\r{}'.format(interaction), end='')
time.sleep(2)
print('\r ', end='')
else:
env_list[S] = '🐂'
interaction = ''.join(env_list)
print('\r{}'.format(interaction), end='')
time.sleep(FRESH_TIME)
def rl():
# main part of RL loop
q_table = build_q_table(N_STATES, ACTIONS)
for episode in range(MAX_EPISODES):
step_counter = 0
S = 0
is_terminated = False
update_env(S, episode, step_counter)
while not is_terminated:
A = choose_action(S, q_table)
S_, R = get_env_feedback(S, A) # take action & get next state and reward
q_predict = q_table.loc[S, A]
if S_ != 'terminal':
q_target = R + GAMMA * q_table.iloc[S_, :].max() # next state is not terminal
else:
q_target = R # next state is terminal
is_terminated = True # terminate this episode
q_table.loc[S, A] += ALPHA * (q_target - q_predict) # update
S = S_ # move to next state
update_env(S, episode, step_counter+1)
step_counter += 1
return q_table
if __name__ == "__main__":
q_table = rl()
print('\r\nQ-table:\n')
print(q_table)
接下来我们分步进行分析。程序的背景是🐮要找到🍺,环境是一个一维世界。
Q-learning 是一种记录行为值 (Q value) 的方法, 每种在一定状态的行为都会有一个值 Q(s, a)
, 就是说 行为 a
在 s
状态的值是 Q(s, a)
. s
在上面的探索者游戏中, 就是 o
所在的地点了. 而每一个地点探索者都能做出两个行为 left/right
, 这就是探索者的所有可行的 a
啦.
如果在某个地点 s1
, 探索者计算了他能有的两个行为, a1/a2=left/right
, 计算结果是 Q(s1, a1) > Q(s1, a2)
, 那么探索者就会选择 left
这个行为. 这就是 Q learning 的行为选择简单规则。
1 预设的参数与需要的模块
import numpy as np
import pandas as pd
import time
N_STATES = 6 # 1维世界的宽度
ACTIONS = ['left', 'right'] # 探索者的可用动作
EPSILON = 0.9 # 贪婪度 greedy
ALPHA = 0.1 # 学习率
GAMMA = 0.9 # 奖励递减值
MAX_EPISODES = 13 # 最大回合数
FRESH_TIME = 0.3 # 移动间隔时间
2 Q表
q_table
的 index 是所有对应的 state
(探索者位置), columns 是对应的 action
(探索者行为).
def build_q_table(n_states, actions):
table = pd.DataFrame(
np.zeros((n_states, len(actions))), # q_table 全 0 初始
columns=actions, # columns 对应的是行为名称
)
return table
# q_table:
"""
left right
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
5 0.0 0.0
3 动作
接着定义探索者是如何挑选行为的. 这是我们引入 epsilon greedy
的概念. 因为在初始阶段, 随机的探索环境, 往往比固定的行为模式要好, 所以这也是累积经验的阶段, 我们希望探索者不会那么贪婪(greedy). 所以 EPSILON
就是用来控制贪婪程度的值. EPSILON
可以随着探索时间不断提升(越来越贪婪), 不过在这个例子中, 我们就固定成 EPSILON = 0.9
, 90% 的时间是选择最优策略, 10% 的时间来探索。
# 在某个 state 地点, 选择行为
def choose_action(state, q_table):
state_actions = q_table.iloc[state, :] # 选出这个 state 的所有 action 值
if (np.random.uniform() > EPSILON) or (state_actions.all() == 0): # 非贪婪 or 或者这个 state 还没有探索过
action_name = np.random.choice(ACTIONS)
else:
action_name = state_actions.argmax() # 贪婪模式
return action_name
4 环境反馈S_,R
做出行为后, 环境也要给我们的行为一个反馈, 反馈出下个 state (S_) 和 在上个 state (S) 做出 action (A) 所得到的 reward (R). 这里定义的规则就是, 只有当 o
移动到了 T
, 探索者才会得到唯一的一个奖励, 奖励值 R=1, 其他情况都没有奖励.
def get_env_feedback(S, A):
# This is how agent will interact with the environment
if A == 'right': # move right
if S == N_STATES - 2: # terminate
S_ = 'terminal'
R = 1
else:
S_ = S + 1
R = 0
else: # move left
R = 0
if S == 0:
S_ = S # reach the wall
else:
S_ = S - 1
return S_, R
5 环境更新
def update_env(S, episode, step_counter):
# This is how environment be updated
env_list = ['-']*(N_STATES-1) + ['T'] # '---------T' our environment
if S == 'terminal':
interaction = 'Episode %s: total_steps = %s' % (episode+1, step_counter)
print('\r{}'.format(interaction), end='')
time.sleep(2)
print('\r ', end='')
else:
env_list[S] = 'o'
interaction = ''.join(env_list)
print('\r{}'.format(interaction), end='')
time.sleep(FRESH_TIME)
6 强化学习的主循环(最重要的地方)
def rl():
q_table = build_q_table(N_STATES, ACTIONS) # 初始 q table
for episode in range(MAX_EPISODES): # 回合
step_counter = 0
S = 0 # 回合初始位置
is_terminated = False # 是否回合结束
update_env(S, episode, step_counter) # 环境更新
while not is_terminated:
A = choose_action(S, q_table) # 选行为
S_, R = get_env_feedback(S, A) # 实施行为并得到环境的反馈
q_predict = q_table.loc[S, A] # 估算的(状态-行为)值
if S_ != 'terminal':
q_target = R + GAMMA * q_table.iloc[S_, :].max() # 实际的(状态-行为)值 (回合没结束)
else:
q_target = R # 实际的(状态-行为)值 (回合结束)
is_terminated = True # terminate this episode
q_table.loc[S, A] += ALPHA * (q_target - q_predict) # q_table 更新
S = S_ # 探索者移动到下一个 state
update_env(S, episode, step_counter+1) # 环境更新
step_counter += 1
return q_table
写好所有的评估和更新准则后, 我们就能开始训练了, 把探索者丢到环境中, 让它自己去玩吧.
if __name__ == "__main__":
q_table = rl()
print('\r\nQ-table:\n')
print(q_table)