动态规划

为了方便,使用 ss 代指 str,使用 pp 代指 pattern

整理一下题意,对于字符串 p 而言,有三种字符:

  • 普通字符:需要和 s 中同一位置的字符完全匹配
  • '.':能够匹配 s 中同一位置的任意字符
  • '*':不能够单独使用 '*',必须和前一个字符同时搭配使用,数据保证了 '*' 能够找到前面一个字符。能够匹配 s 中同一位置字符任意次。

所以本题关键是分析当出现 a* 这种字符时,是匹配 0 个 a、还是 1 个 a、还是 2 个 a ...

本题可以使用动态规划进行求解:

  • 状态定义:f(i,j) 代表考虑 s 中以 i 为结尾的子串和 p 中的 j 为结尾的子串是否匹配。即最终我们要求的结果为 f[n][m]

  • 状态转移:也就是我们要考虑 f(i,j) 如何求得,前面说到了 p 有三种字符,所以这里的状态转移也要分三种情况讨论:

    1. p[j] 为普通字符:匹配的条件是前面的字符匹配,同时 s 中的第 i 个字符和 p 中的第 j 位相同。 即 f(i,j) = f(i - 1, j - 1) && s[i] == p[j]

    2. p[j]'.':匹配的条件是前面的字符匹配, s 中的第 i 个字符可以是任意字符。即 f(i,j) = f(i - 1, j - 1) && p[j] == '.'

    3. p[j]'*':读得 p[j - 1] 的字符,例如为字符 a。 然后根据 a* 实际匹配 sa 的个数是 0 个、1 个、2 个 ...

      3.1. 当匹配为 0 个:f(i,j) = f(i, j - 2)

      3.2. 当匹配为 1 个:f(i,j) = f(i - 1, j - 2) && (s[i] == p[j - 1] || p[j - 1] == '.')

      3.3. 当匹配为 2 个:f(i,j) = f(i - 2, j - 2) && ((s[i] == p[j - 1] && s[i - 1] == p[j - 1]) || p[j] == '.')

      ...

我们知道,通过「枚举」来确定 * 到底匹配多少个 a 这样的做法,算法复杂度是很高的。

我们需要挖掘一些「性质」来简化这个过程。

640.png

代码:

import java.util.*;
public class Solution {
    public boolean match (String ss, String pp) {
        // 技巧:往原字符头部插入空格,这样得到 char 数组是从 1 开始,而且可以使得 f[0][0] = true,可以将 true 这个结果滚动下去
        int n = ss.length(), m = pp.length();
        ss = " " + ss;
        pp = " " + pp;
        char[] s = ss.toCharArray();
        char[] p = pp.toCharArray();
        // f(i,j) 代表考虑 s 中的 1~i 字符和 p 中的 1~j 字符 是否匹配
        boolean[][] f = new boolean[n + 1][m + 1];
        f[0][0] = true;
        for (int i = 0; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                // 如果下一个字符是 '*',则代表当前字符不能被单独使用,跳过
                if (j + 1 <= m && p[j + 1] == '*') continue;

                // 对应了 p[j] 为普通字符和 '.' 的两种情况
                if (i - 1 >= 0 && p[j] != '*') {
                    f[i][j] = f[i - 1][j - 1] && (s[i] == p[j] || p[j] == '.');
                }

                // 对应了 p[j] 为 '*' 的情况
                else if (p[j] == '*') {
                    f[i][j] = (j - 2 >= 0 && f[i][j - 2]) || (i - 1 >= 0 && f[i - 1][j] && (s[i] == p[j - 1] || p[j - 1] == '.'));
                }
            }
        }
        return f[n][m];
    }
}
  • 时间复杂度:n 表示 s 的长度,m 表示 p 的长度,总共 个状态。复杂度为
  • 空间复杂度:使用了二维数组记录结果。复杂度为

动态规划本质上是枚举(不重复的暴力枚举),因此其复杂度很好分析,有多少个状态就要被计算多少次,复杂度就为多少。


最后

这是我们「剑指 の 精选」系列文章的第 No.52 篇,系列开始于 2021/07/01。

该系列会将牛客网「剑指 Offer」中比较经典而又不过时的题目都讲一遍。

在提供追求「证明」&「思路」的同时,提供最为简洁的代码。

欢迎关注,交个朋友 (`・ω・´)