AVL平衡二叉树
判断完全二叉树的方法:从上往下编号1~N,左孩子是父节点的2倍,右孩子是父节点的2倍加1,按照层序放入vector中,如果最后一个元素的索引不为节点的总数n,则说明这棵树不是完全二叉树。
#include<bits/stdc++.h>
using namespace std;
struct node{
node* left;
node* right;
int data,height,index;
};
int getHeight(node* root){
if(root == NULL) return 0;
return root->height;
}
int getBalanceFactor(node* root){
return getHeight(root->left) - getHeight(root->right);
}
void updateHeight(node* root){
root->height = max(getHeight(root->left), getHeight(root->right)) + 1;
}
void L(node* &root){ //左旋
node* tmp = root->right;
root->right = tmp->left;
tmp->left = root;
updateHeight(root);
updateHeight(tmp);
root = tmp;
}
void R(node* &root){ //左旋
node* tmp = root->left;
root->left = tmp->right;
tmp->right = root;
updateHeight(root);
updateHeight(tmp);
root = tmp;
}
void insert(node* &r, int v){
if(r == NULL){
r = new node;
r->data = v;
r->height = 1;
r->left = r->right = NULL;
}else if(v < r->data){ //左子树
insert(r->left,v);
updateHeight(r);
if(getBalanceFactor(r)==2){
if(getBalanceFactor(r->left)== 1){ //LL型
R(r);
}else if(getBalanceFactor(r->left)==-1){ //LR型
L(r->left);
R(r);
}
}
}else { //右子树
insert(r->right, v);
updateHeight(r);
if(getBalanceFactor(r)==-2){
if(getBalanceFactor(r->right)==1){ //RL型
R(r->right);
L(r);
}else if(getBalanceFactor(r->right)==-1){//RR型
L(r);
}
}
}
}
vector<node*> v;
void levelorder(node* root){
queue<node*> q;
root->index = 1;
q.push(root);
while(!q.empty()){
node* tmp = q.front();
q.pop();
v.push_back(tmp);
if(tmp->left != NULL){
q.push(tmp->left);
tmp->left->index = 2*tmp->index;
}
if(tmp->right != NULL){
q.push(tmp->right);
tmp->right->index = 2* tmp->index + 1;
}
}
}
int main(){
int n,num;
cin>>n;
node* root = NULL;
for(int i=0;i<n;i++){
cin>>num;
insert(root, num);
}
levelorder(root);
for(int i=0;i<v.size();i++){
cout<<v[i]->data;
if(i!=v.size()-1) cout<<" ";
else cout<<endl;
}
if(v[v.size()-1]->index != n) cout<<"NO"<<endl;
else cout<<"YES"<<endl;
return 0;
}