简介

Min_25筛据说可以在处理出含有以下性质的函数f的前缀和:
1.,即f是一个积性函数
2.可以快速计算。

PS:本文没有关于复杂度的证明。。。

预处理

首先要预处理两个东西,一个是(n为询问的值域)内的质数。直接线性筛就好了。用表示第i个质数。设共有个质数

另一个是,表示所有中满足x最小质因子大于或者x是质数的之和。

这样一来,表示的就是中所有质数的f值之和。这个东西后面会用到。

那么来看一下这个值该如何求。

显然,如果那么。因为这时的已经只表示中所有质数的f之和。并不会比多删除掉任何东西。

如果呢?我们可以理解为埃氏筛法的过程,的差别就是筛掉了的倍数。那么就好像可以转移了。问题就在于如何计算出所有的倍数所产生的贡献。前面说到这是一个积性函数,所以我们将这些要删除的数全都提出来一个,那么剩下的就是了。因为需要是这些数字的最小质因子,所以实际上区间内的数字是不可以的,所以要删除的区间实际上是所以要删除的数字就是。也就是说

因为最终我们需要的只有。所以空间只需要开一维,每次处理复杂度是的(实际上并不到),类似于整除分块,我们知道只有级别种取值。复杂度据说是

计算答案

上面的东西预处理完了,那么有什么用呢??

我们再定义一个函数表示中满足的最小质因子大于等于之和。

最终我们要求的答案就是

上面说到,可以表示中所有质数的值之和。

所以我们将分为质数和合数两块来处理。

质数的一块显然就是。为什么要减掉后面这一块??因为小于的质数不包含在里面呀~

然后考虑合数的一块该如何求,我们枚举一下这些合数的最小质因子的指数。于上方求g的方法类似的,我们可以提出来一个,那么剩下的就是,他们的f之和就是。发现这样无法转移,那么我们只好从转移过来,但是这样就没被计算,单独加上就好了。

综上所述,

然后递归计算即可。这里的复杂度据说也是

经典例题

loj6053简单的函数

定义函数满足以下性质,
1.
2.(p为质数)
3.

思路

发现这些性质恰好吻合了我们一开始要求的性质。
发现除2外所有的质数均为奇数,所以就有(p为奇质数)。然后发现这个东西并不是积性函数,没法预处理g了。怎么办?
那就把它拆开,拆成,那么就有。然后按照上述方法分别预处理除关于。关于
要说明的是,我们一开始将所有的合数全都当成奇质数来处理,因为最后都要“筛”掉的,所以没有影响。

具体细节:

预处理g时,有个式子是,也就是前个质数的前缀和。所以预处理质数时同时预处理一下前缀和。

code

/*
* @Author: wxyww
* @Date:   2019-12-22 17:42:00
* @Last Modified time: 2019-12-24 21:58:42
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 2000010,mod = 1e9 + 7;
ll read() {
    ll x = 0,f = 1;char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-') f = -1; c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = x * 10 + c - '0'; c = getchar();
    }
    return x * f;
}
int tot;
ll n,m,w[N],pri[N],sum[N],js,vis[N],g[N],h[N];
void pre() {//筛出质数
    for(int i = 2;i <= m;++i) {
        if(!vis[i]) {
            pri[++js] = i;
            sum[js] = sum[js - 1] + i;
            sum[js] %= mod;
        }
        for(int j = 1;j <= js && i * pri[j] <= m;++j) {
            vis[pri[j] * i] = 1;
            if(i % pri[j] == 0) break;
        }
    }
}
int id1[N],id2[N];
ll S(ll now,int x) {
    if(now <= 1 || pri[x] > now) return 0;

    // printf("%lld %d\n",now,x);

    int k;
    if(now <= m) k = id1[now];
    else k = id2[n / now];

    ll ret = (g[k] - h[k] - sum[x - 1] + x - 1) % mod;

    if(x == 1) ret += 2;//f(2)当作1计算,实际上f(2)=3 

    for(int k = x;k <= js && pri[k] * pri[k] <= now;++k) {
        ll p = pri[k];
        for(int e = 1;p * pri[k] <= now;p = p * pri[k],++e) {
            ret += (pri[k] ^ e) * S(now / p,k + 1) % mod + (pri[k] ^ (e + 1));
            ret %= mod;
        }
    }
    return ret;
}

int main() {
    // freopen("1.in","w",stdout);
    n = read();
    m = sqrt(n);
    pre();

    // puts("!!!");
    for(ll l = 1,r;l <= n;l = r + 1) {
        r = n / (n / l);
        ll tmp = n / l;
        w[++tot] = tmp;
        if(tmp <= m) id1[tmp] = tot;//数组不够大,通过id1和id2来映射到sqrt(n)以内
        else id2[n / tmp] = tot;

        g[tot] = (tmp + 2) % mod * ((tmp - 1) % mod) % mod;

        if(g[tot] & 1) g[tot] += mod;

        g[tot] /= 2;
        // g[tot] %= mod;
        h[tot] = tmp - 1;
    }

    // for(int i = 1;i <= tot;++i) printf("%lld ",g[i]);

    for(int j = 1;j <= js;++j) {
        for(int i = 1;i <= tot  && pri[j] * pri[j] <= w[i];++i) {//枚举顺序不能颠倒
            ll tmp = w[i] / pri[j];
            int k;
            if(tmp <= m) k = id1[tmp];
            else k = id2[n / tmp];
            g[i] -= pri[j] * (g[k] - sum[j - 1]) % mod;//枚举顺序不能颠倒的原因
            g[i] %= mod;
            h[i] -= (h[k] - (j - 1));
            h[i] %= mod;
        }
    }


    // cout<<g[tot - 2]<<endl;

    cout<<(S(n,1) + 1 + mod) % mod;//单独把1算上 
    return 0;
}