7.5 案例:DNN文本多分类
学习目标
- 目标
- 无
- 应用
- 应用tf estimator完成文本分类
7.5.1 IMDB电影评论文本的神经网络分类
- 目的:对IMDB电影评论数据进行训练,预测分类
- 步骤:
- 1、电影评论数据读取
- 2、模型输入特征列指定
- 3、模型训练与保存
1、电影评论数据读取
我们将要使用的数据集是 IMDB Large Movie Review Dataset,包含用于训练的 25000 段带有明显情感倾向的电影评论,测试集有 25000 段。我们将会用此数据集训练一个二分类模型,用于判断一篇评论是积极的还是消极的。
比如一个负面评论(2 颗星)的片段:
Now, I LOVE Italian horror films. The cheesier they are, the better. However, this is not cheesy Italian. This is week-old spaghetti sauce with rotting meatballs. It is *** hour on every level. There is no suspense, no horror, with just a few drops of blood scattered around to remind you that you are in fact watching a horror film.
我们用 0 将所有句子补齐到相同长度,这样对于训练集和测试集我们就分别有一个两维的 25000×200 的数组。
# 指定总共多少不同的词,每个样本的序列长度最大多少
from tensorflow import keras
vocab_size = 5000
sentence_size = 200
def get_train_test():
""" 获取电影评论文本数据 :return: """
imdb = keras.datasets.imdb
(x_train_source, y_train), (x_test_source, y_test) = imdb.load_data(num_words=5000)
# 每个样本评论序列长度固定
x_train = keras.preprocessing.sequence.pad_sequences(x_train_source,
maxlen=max_sentence,
padding='post', value=0)
x_test = keras.preprocessing.sequence.pad_sequences(x_test_source,
maxlen=max_sentence,
padding='post', value=0)
return (x_train, y_train), (x_test, y_test)
- 填充序列pad_sequences
keras.preprocessing.sequence.pad_sequences(sequences, maxlen=None, dtype='int32',
padding='pre', truncating='pre', value=0.)
将长为nb_samples
的序列转化为形如(nb_samples,nb_timesteps)
2D numpy array。如果提供了参数maxlen
,nb_timesteps=maxlen
,否则其值为最长序列的长度。其他短于该长度的序列都会在后部填充0以达到该长度。长于nb_timesteps
的序列将会被截断,以使其匹配目标长度。padding和截断发生的位置分别取决于padding
和truncating
.
参数
- sequences:浮点数或整数构成的两层嵌套列表
- maxlen:None或整数,为序列的最大长度。大于此长度的序列将被截短,小于此长度的序列将在后部填0.
- dtype:返回的numpy array的数据类型
- padding:‘pre’或‘post’,确定当需要补0时,在序列的起始还是结尾补
- truncating:‘pre’或‘post’,确定当需要截断序列时,从起始还是结尾截断
- value:浮点数,此值将在填充时代替默认的填充值0
2、Input Functions的定义
def parser(x, y):
features = {
"feature": x}
return features, y
def train_input_fn():
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size=25000)
dataset = dataset.batch(64)
dataset = dataset.map(parser)
dataset = dataset.repeat()
return dataset
def eval_input_fn():
dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))
dataset = dataset.batch(64)
dataset = dataset.map(parser)
return dataset
注:要在
input_fn
中使用Dataset
(input_fn 属于tf.estimator.Estimator
),只需返回Dataset
即可,框架将负责创建和初始化迭代器。
2、模型输入特征列指定
指定特征列
column = tf.feature_column.categorical_column_with_identity('feature', vocab_size)
embedding_size = 50
word_embedding_column = tf.feature_column.embedding_column(
column, dimension=embedding_size
)
3、进行模型训练
指定模型的神经网络的神经元数量,以及几层;
- 参数model_dir:模型输出目录指定
classifier = tf.estimator.DNNClassifier(
hidden_units=[100],
feature_columns=[word_embedding_column],
model_dir='./tmp/embeddings'
)
classifier.train(input_fn=train_input_fn, steps=25000)
eval_results = classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)