图割(Graph Cut)

1.在图割的例子中采用python-graph工具包,这里给出计算一副较小的图的最大流/最小割的简单例子:
代码:

from pygraph.classes.digraph import digraph
from pygraph.algorithms.minmax import maximum_flow

gr = digraph()
gr.add_nodes([0,1,2,3])
gr.add_edge((0,1), wt=4)
gr.add_edge((1,2), wt=3)
gr.add_edge((2,3), wt=5)
gr.add_edge((0,2), wt=3)
gr.add_edge((1,3), wt=4)
flows,cuts = maximum_flow(gr, 0, 3)
print ('flow is:' , flows)
print ('cut is:' , cuts)

运行结果:

最大流flow和最小割cut:

2.利用贝叶斯概率模型进行图割分割,图像降采样到54*38大小
代码:

# -*- coding: utf-8 -*-

from scipy.misc import imresize
from PCV.tools import graphcut
from PIL import Image
from numpy import *
from pylab import *

im = array(Image.open("empire.jpg"))
im = imresize(im, 0.07)
size = im.shape[:2]
print ("OK!!")

# add two rectangular training regions
labels = zeros(size)
labels[3:18, 3:18] = -1
labels[-18:-3, -18:-3] = 1
print ("OK!!")


# create graph
g = graphcut.build_bayes_graph(im, labels, kappa=1)

# cut the graph
res = graphcut.cut_graph(g, size)
print ("OK!!")


figure()
graphcut.show_labeling(im, labels)

figure()
imshow(res)
gray()
axis('off')

show()

运行结果:

用于模型训练的标记图像:

分割的结果:

3.利用归一化分割算法分割图像
利用静态手势数据库的某幅手势图像,聚类数k设置为3
三类分割结果: