一、定义
贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1763)曾提出计算条件概率的公式用来解决如下一类问题:假设H[1],H[2]…,H[n]互斥且构成一个完全事件,已知它们的概率P(H),i=1,2,…,n,现观察到某事件A与H[,1],H[,2]…,H[,n]相伴随机出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。
贝叶斯公式(发表于1763年)为: P(H/A)=P(H)*P(A│H)/{P(H[1])*P(A│H[1]) +P(H[2])*P(A│H[2])+…+P(H[n])*P(A│H[n])}
这就是著名的"贝叶斯定理",一些文献中把P(H[1])、P(H[2])称为基础概率,P(A│H[1])为击中率,P(A│H[2])为误报率 。
二、应用
贝叶斯定理用于投资决策分析是在已知相关项目B的资料,而缺***证项目A的直接资料时,通过对B项目的有关状态及发生概率分析推导A项目的状态及发生概率。如果我们用数学语言描绘,即当已知事件Bi的概率P(Bi)和事件Bi已发生条件下事件A的概率P(A│Bi),则可运用贝叶斯定理计算出在事件A发生条件下事件Bi的概率P(Bi│A)。按贝叶斯定理进行投资决策的基本步骤是:
1 列出在已知项目B条件下项目A的发生概率,即将P(A│B)转换为 P(B│A);
2 绘制树型图;
3 求各状态结点的期望收益值,并将结果填入树型图;
4 根据对树型图的分析,进行投资项目决策;
搜索巨人Google和Autonomy,一家出售信息恢复工具的公司,都使用了贝叶斯定理(Bayesian principles)为数据搜索提供近似的(但是技术上不确切)结果。研究人员还使用贝叶斯模型来判断症状和疾病之间的相互关系,创建个人机器人,开发能够根据数据和经验来决定行动的人工智能设备。
三、例题
https://ac.nowcoder.com/acm/contest/358/B(题解:https://blog.csdn.net/weixin_43272781/article/details/86547475)