62.不同路径
-
dp[i][j]是从(0, 0)出发走到(i, j)的不同路径数.
-
限定了只能向右或者向下走,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],初始化边界的路径数都为1,遍历顺序从左上到右下每层遍历。
-
注意小trick,结果是dp[m - 1][n - 1]。自己想的,棒,dp找递推可以先逆着想。
//C++
class Solution {
public:
int uniquePaths(int m, int n) {
//vector<vector<int>> dp(m, vector<int>(n, 0));
int dp[101][101];
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
}
}
return dp[m - 1][n - 1];
}
};
63. 不同路径 II
与上一题类似,只不过遇到障碍物保持dp为初始0,也就是跳过计算,同时初始化值的时候边界遇到障碍物后面dp也都维持0。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
dp[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 0)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};