线性回归
学习目标
- 掌握线性回归的实现过程
- 应用LinearRegression或SGDRegressor实现回归预测
- 知道回归算法的评估标准及其公式
- 知道过拟合与欠拟合的原因以及解决方法
- 知道岭回归的原理及与线性回归的不同之处
- 应用Ridge实现回归预测
- 应用joblib实现模型的保存与加载
2.2 线性回归api初步使用
1 线性回归API
- sklearn.linear_model.LinearRegression()
- LinearRegression.coef_:回归系数
2 举例
2.1 步骤分析
- 1.获取数据集
- 2.数据基本处理(该案例中省略)
- 3.特征工程(该案例中省略)
- 4.机器学习
- 5.模型评估(该案例中省略)
2.2 代码过程
from sklearn.linear_model import LinearRegression
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
estimator = LinearRegression()
estimator.fit(x,y)
estimator.coef_
estimator.predict([[100, 80]])