基本分析

LRU 是一种十分常见的页面置换算法。

将 LRU 翻译成大白话就是:当不得不淘汰某些数据时(通常是容量已满),选择最久未被使用的数据进行淘汰。

题目让我们实现一个容量固定的 LRUCache 。如果插入数据时,发现容器已满时,则先按照 LRU 规则淘汰一个数据,再将新数据插入,其中「插入」和「查询」都算作一次“使用”。

可以通过 🌰 来理解,假设我们有容量为 LRUCache 和 测试键值对 [1-1,2-2,3-3] ,将其按照顺序进行插入 & 查询:

  • 插入 1-1,此时最新的使用数据为 1-1
  • 插入 2-2,此时最新使用数据变为 2-2
  • 查询 1-1,此时最新使用数据为 1-1
  • 插入 3-3,由于容器已经达到容量,需要先淘汰已有数据才能插入,这时候会淘汰 2-23-3 成为最新使用数据

键值对存储方面,我们可以使用「哈希表」来确保插入和查询的复杂度为

另外我们还需要额外维护一个「使用顺序」序列。

我们期望当「新数据被插入」或「发生键值对查询」时,能够将当前键值对放到序列头部,这样当触发 LRU 淘汰时,只需要从序列尾部进行数据删除即可。

期望在 复杂度内调整某个节点在序列中的位置,很自然想到双向链表。

双向链表

具体的,我们使用哈希表来存储「键值对」,键值对的键作为哈希表的 Key,而哈希表的 Value 则使用我们自己封装的 Node 类,Node 同时作为双向链表的节点。

  • 插入:检查当前键值对是否已经存在于哈希表:
    • 如果存在,则更新键值对,并将当前键值对所对应的 Node 节点调整到链表头部(refresh 操作)
    • 如果不存在,则检查哈希表容量是否已经达到容量:
      • 没达到容量:插入哈希表,并将当前键值对所对应的 Node 节点调整到链表头部(refresh 操作)
      • 已达到容量:先从链表尾部找到待删除元素进行删除(delete 操作),然后再插入哈希表,并将当前键值对所对应的 Node 节点调整到链表头部(refresh 操作)
  • 查询:如果没在哈希表中找到该 Key,直接返回 ;如果存在该 Key,则将对应的值返回,并将当前键值对所对应的 Node 节点调整到链表头部(refresh 操作)

一些细节:

  • 为了减少双向链表左右节点的「判空」操作,我们预先建立两个「哨兵」节点 headtail

代码:

import java.util.*;
class LRUCache {
    class Node {
        int k, v;
        Node l, r;
        Node(int _k, int _v) {
            k = _k;
            v = _v;
        }
    }
    int n;
    Node head, tail;
    Map<Integer, Node> map;
    public LRUCache(int capacity) {
        n = capacity;
        map = new HashMap<>();
        head = new Node(-1, -1);
        tail = new Node(-1, -1);
        head.r = tail;
        tail.l = head;
    }

    public int get(int key) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            refresh(node);
            return node.v;
        } 
        return -1;
    }

    public void put(int key, int value) {
        Node node = null;
        if (map.containsKey(key)) {
            node = map.get(key);
            node.v = value;
        } else {
            if (map.size() == n) {
                Node del = tail.l;
                map.remove(del.k);
                delete(del);
            }
            node = new Node(key, value);
            map.put(key, node);
        }
        refresh(node);
    }

    // refresh 操作分两步:
    // 1. 先将当前节点从双向链表中删除(如果该节点本身存在于双向链表中的话)
    // 2. 将当前节点添加到双向链表头部
    void refresh(Node node) {
        delete(node);
        node.r = head.r;
        node.l = head;
        head.r.l = node;
        head.r = node;
    }

    // delete 操作:将当前节点从双向链表中移除
    // 由于我们预先建立 head 和 tail 两位哨兵,因此如果 node.l 不为空,则代表了 node 本身存在于双向链表(不是新节点)
    void delete(Node node) {
        if (node.l != null) {
            Node left = node.l;
            left.r = node.r;
            node.r.l = left;
        }
    }
}

public class Solution {
    /**
     * lru design
     * @param operators int整型二维数组 the ops
     * @param k int整型 the k
     * @return int整型一维数组
     */
    public int[] LRU (int[][] operators, int k) {
        List<Integer> list = new ArrayList<>();
        LRUCache lru = new LRUCache(k);
        for (int[] op : operators) {
            int type = op[0];
            if (type == 1) {
                // set(k,v) 操作
                lru.put(op[1], op[2]);
            } else {
                // get(k) 操作
                list.add(lru.get(op[1]));
            }
        } 
        int n = list.size();
        int[] ans = new int[n];
        for (int i = 0; i < n; i++) ans[i] = list.get(i);
        return ans;
    }
}
  • 时间复杂度:各操作均为
  • 空间复杂度:

最后

这是我们「必考真题 の 精选」系列文章的第 No.93 篇,系列开始于 2021/07/01。

该系列会将牛客网中「题霸 - 面试必考真题」中比较经典而又不过时的题目都讲一遍。

在提供追求「证明」&「思路」的同时,提供最为简洁的代码。

欢迎关注,交个朋友 (`・ω・´)