DFS与BFS
两者的对比:(h是树的高度)
DFS:使用的是栈,空间O(h),不具有最短性
BFS:使用的是队列,空间O(2^h),最短路--涉及最短路径,最小距离等概念的就使用BFS算法
1.DFS-深度优先搜索
全排列问题
func permute(nums []int) [][]int {
n := len(nums)
var res [][]int
var path []int
var is_used []bool = make([]bool,n)
var dfs func(int)
dfs = func(u int){
if u == n {
res = append(res,append([]int(nil),path...))
return
}
for i := 0 ; i < n ; i++ {
if !is_used[i] {
path = append(path,nums[i])
is_used[i] = true
dfs(u+1)
path = path[:len(path)-1]
is_used[i] = false
}
}
}
dfs(0)
return res
}N皇后问题
func solveNQueens(n int) [][]string {
var res [][]string
if n < 1 {
return res
}
var path [][]byte = make([][]byte,n)
var col []bool = make([]bool,n)
var zdj []bool = make([]bool,n*2)
var udj []bool = make([]bool,n*2)
for i := 0 ; i < n ; i++ {
path[i] = make([]byte,n)
for j := 0 ; j < n ; j++ {
path[i][j] = '.'
}
}
var dfs func(int)
dfs = func(u int) {
if u == n {
ans := make([]string,n)
for i := 0 ; i < n ; i ++{
ans[i] = string(path[i])
}
res = append(res,ans)
return
}
for i := 0 ; i < n ; i++ {
if !col[i] && !zdj[u+i] && !udj[i-u+n] {
path[u][i] = 'Q'
col[i] = true
zdj[u+i] = true
udj[i-u+n] = true
dfs(u+1)
col[i] = false
zdj[u+i] = false
udj[i-u+n] = false
path[u][i] = '.'
}
}
}
dfs(0)
return res
}2.BFS-宽度优先搜索
先遍历第一个节点,然后遍历与第一个节点距离为1的所有节点,然后遍历与第一个节点距离为2的所有节点等等等
当所有边的权重都为1时,最短路径问题用BFS来解决
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
//g用来存储地图,d用来存储每个点到起点的距离
int g[N][N], d[N][N];
//如果想要将路径输出的话,可以增加一个额外的数组来存储当前点是从哪个点过来的
//int pre[N][N]
int bfs()
{
queue<PII> q;
memset(d, -1, sizeof d);//初始化距离为-1
d[0][0] = 0;
q.push({0, 0});
//上右下左的游走
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
while (q.size())
{
auto t = q.front();//队头
q.pop();
for (int i = 0; i < 4; i ++ )
{
int x = t.first + dx[i], y = t.second + dy[i];
if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
{
d[x][y] = d[t.first][t.second] + 1;
//pre[x][y] = t
q.push({x, y});
}
}
}
int x = n-1,y=m-1;
while(x || y ){
cout << x << ' ' << y << endl;
auto t = pre[x][y]
x = t.first,y=t.second
}
return d[n - 1][m - 1];
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
cin >> g[i][j];
cout << bfs() << endl;
return 0;
}3.树与图的存储
树是无环连通图
有向图和无向图
1、邻接矩阵存储 g[a][b] 存储a->b的信息 较适合用来存储稠密图,使用频率比较少
2、邻接表存储
![图片说明]
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;
// 添加一条边a->b
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
// 初始化
idx = 0;
memset(h, -1, sizeof h);不管是深度优先遍历还是广度优先遍历,每个节点一般只遍历一次即可,所以一般会用一个布尔数组标记哪个节点被搜索过
4.树与图的深度优先遍历
//时间复杂度 O(n+m), n 表示点数,m 表示边数
int dfs(int u)
{
st[u] = true; // st[u] 表示点u已经被遍历过
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j]) dfs(j);
}
}5.树与图的宽度优先遍历
queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true; // 表示点j已经被遍历过
q.push(j);
}
}
}
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 100010;
int n, m;
int h[N], e[N], ne[N], idx;
int d[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
int bfs()
{
memset(d, -1, sizeof d);
queue<int> q;
d[1] = 0;
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (d[j] == -1)
{
d[j] = d[t] + 1;
q.push(j);
}
}
}
return d[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < m; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
}
cout << bfs() << endl;
return 0;
}6.拓扑排序
针对有向图来说的,无向图没有拓扑序列,且一个有向无环图的拓扑序列是不唯一的
对一个有向无环图(拓扑图)进行拓扑排序,是将图中所有顶点排成一个线性序列,使得图中任意一对顶点u,v,若存在从 u 到 v 的路径,则在拓扑排序序列中一定是 u 出现在 v 的前面。
入度:u 的入度是指向 u 的边的条数。一个有向无环图一定至少存在一个入度为0的点
出度:u 的出度是从 u 出发的边的条数
所有入度为0的点都可以排在当前最前面的位置。
时间复杂度 O(n+m),n 表示点数,m 表示边数
bool topsort()
{
int hh = 0, tt = -1;
// d[i] 存储点i的入度
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (-- d[j] == 0)
q[ ++ tt] = j;
}
}
// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;
}
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n, m;
int h[N], e[N], ne[N], idx;
int d[N];
int q[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
bool topsort()
{
int hh = 0, tt = -1;
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (-- d[j] == 0)
q[ ++ tt] = j;
}
}
return tt == n - 1; //判断该图是否存在拓扑序列
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < m; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
d[b] ++ ;
}
if (!topsort()) puts("-1");
else
{
for (int i = 0; i < n; i ++ ) printf("%d ", q[i]);//队列里面的次序就是图的拓扑序
puts("");
}
return 0;
}最短路问题
常见的最短路问题分为两大类:
朴素Dijkstra算法适用于稠密图)
int g[N][N]; // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定
// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n - 1; i ++ )
{
int t = -1; // 在还未确定最短路的点中,寻找距离最小的点
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
// 用t更新其他点的距离
for (int j = 1; j <= n; j ++ )
dist[j] = min(dist[j], dist[t] + g[t][j]);
st[t] = true;
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}堆优化的dijkstra算法(适用于稀疏图)
typedef pair<int, int> PII;
int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定
// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e6 + 10;
int n, m;
//w表示权重
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); //队列里面存储pair,表示距离是0,编号是1
while (heap.size())
{
auto t = heap.top();//当前距离最小的点
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;//如果之前点已经出现过,可以不用处理了
st[ver] = true;
//用当前点来更新其它点的距离
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[ver] + w[i])
{
dist[j] = dist[ver] + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
cout << dijkstra() << endl;
return 0;
}Bellman-Ford算法
在求最短路的时候,如果有负权回路,那么最短路径不一定存在
迭代K次以后得到的dist的含义是,从1号点经过不超过k条边到各个点的最短距离
如果迭代n次后,最短路还有更新的话,那么说明存在一条最短路径上面有n条边,那么就一定有n+1个结点,也就是说这个路径上一定存在环路,并且这个环路是负环
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 510, M = 10010;
struct Edge
{
int a, b, c;
}edges[M];
int n, m, k;
int dist[N];
int last[N];
void bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < k; i ++ )
{
memcpy(last, dist, sizeof dist);//每次在进行新的迭代之前,需要将dist数组备份一下,要保证更新的时候只用上一次迭代的结果,last里面存储的就是我上一次迭代的结果
for (int j = 0; j < m; j ++ )
{
auto e = edges[j];
dist[e.b] = min(dist[e.b], last[e.a] + e.c);
}
}
}
int main()
{
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < m; i ++ )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
edges[i] = {a, b, c};
}
bellman_ford();
if (dist[n] > 0x3f3f3f3f / 2) puts("impossible");
else printf("%d\n", dist[n]);
return 0;
}SPFA算法(对上一个算法进行优化)
求最短路
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中
// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])//只有当距离变小之后才会更新
{
dist[j] = dist[t] + w[i];
if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
{
q.push(j);
st[j] = true;
}
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}是否存在负环
最坏时间复杂度是 O(nm), n 表示点数,m 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中
// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。
queue<int> q;
for (int i = 1; i <= n; i ++ )//因为负环不一定是从1开始的,所以要将所有的点都放进去
{
q.push(i);
st[i] = true;
}
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
if (!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return false;
}Floyd算法-求最短路
//时间复杂度是 O(n^3), n 表示点数
//初始化:
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
// 算法结束后,d[a][b]表示a到b的最短距离
//(k,i,j)表示从i点只经过从1到k这些中间点,到达点j点的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 210, INF = 1e9;
int n, m, Q;
int d[N][N];
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main()
{
scanf("%d%d%d", &n, &m, &Q);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;//相当于将自环删掉
else d[i][j] = INF;
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
d[a][b] = min(d[a][b], c);
}
floyd();
while (Q -- )
{
int a, b;
scanf("%d%d", &a, &b);
int t = d[a][b];
if (t > INF / 2) puts("impossible");
else printf("%d\n", t);
}
return 0;
}最小生成树
普利姆算法
朴素普利姆算法(稠密图)-O(n^2)
···
int n; // n表示点数
int g[N][N]; // 邻接矩阵,存储所有边
int dist[N]; // 存储其他点到当前最小生成树的距离
bool st[N]; // 存储每个点是否已经在生成树中
// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
memset(dist, 0x3f, sizeof dist);
int res = 0;
for (int i = 0; i < n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if (i && dist[t] == INF) return INF;
if (i) res += dist[t];
st[t] = true;
for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
}
return res;}
···
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N];
int dist[N];
bool st[N];
int prim()
{
memset(dist, 0x3f, sizeof dist);
int res = 0;
for (int i = 0; i < n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if (i && dist[t] == INF) return INF;
if (i) res += dist[t];
st[t] = true;
for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
}
return res;
}
int main()
{
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof g);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = g[b][a] = min(g[a][b], c);
}
int t = prim();
if (t == INF) puts("impossible");
else printf("%d\n", t);
return 0;
}堆优化普利姆算法(稀疏图)-O(mlogn)
克鲁斯卡尔算法(稀疏图)-O(mlogm)
int n, m; // n是点数,m是边数
int p[N]; // 并查集的父节点数组
struct Edge // 存储边
{
int a, b, w;
bool operator< (const Edge &W)const
{
return w < W.w;
}
}edges[M];
int find(int x) // 并查集核心操作
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int kruskal()
{
sort(edges, edges + m);
for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集
int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ )
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if (a != b) // 如果两个连通块不连通,则将这两个连通块合并
{
p[a] = b;
res += w;//存储最小生成树的边权值
cnt ++ ;//存储最小生成树的边数
}
}
if (cnt < n - 1) return INF;
return res;
}二分图
染色法(判别一个图是不是二分图)-O(m+n)
一个图是二分图,当且仅当图中不含奇数环(环中边的数量是奇数)
int n; // n表示点数
int h[N], e[M], ne[M], idx; // 邻接表存储图
int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色
// 参数:u表示当前节点,c表示当前点的颜***ool dfs(int u, int c)
{
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (color[j] == -1)
{
if (!dfs(j, !c)) return false;
}
else if (color[j] == c) return false;
}
return true;
}
bool check()
{
memset(color, -1, sizeof color);
bool flag = true;
for (int i = 1; i <= n; i ++ )
if (color[i] == -1)
if (!dfs(i, 0))
{
flag = false;
break;
}
return flag;
}匈牙利算法(求二分图的最大匹配)-最坏是O(mn),实际运行时间一般远小于O(mn)
返回二分图中成功匹配的边的最大数,成功匹配是指不存在两条边共用一个顶点
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过
void add(int a,int b){
e[idx] = b,ne[idx]=h[a],h[a]=idx++;
}
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))//该女生没有被匹配或者已经匹配的男生可以找到下家
{
match[j] = x;
return true;
}
}
}
return false;
}
// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++ ;
}
京公网安备 11010502036488号