案例–算法实现:Item-Based CF 预测评分
评分预测公式:
p r e d ( u , i ) = r ^ u i = ∑ j ∈ I r a t e d s i m ( i , j ) ∗ r u j ∑ j ∈ I r a t e d s i m ( i , j ) pred(u,i)=\hat{r}_{ui}=\cfrac{\sum_{j\in I_{rated}}sim(i,j)*r_{uj}}{\sum_{j\in I_{rated}}sim(i,j)} pred(u,i)=r^ui=∑j∈Iratedsim(i,j)∑j∈Iratedsim(i,j)∗ruj
算法实现
-
实现评分预测方法:
predict
-
方法说明:
利用原始评分矩阵、以及物品间两两相似度,预测指定用户对指定物品的评分。
如果无法预测,则抛出异常
# ...... def predict(uid, iid, ratings_matrix, item_similar): ''' 预测给定用户对给定物品的评分值 :param uid: 用户ID :param iid: 物品ID :param ratings_matrix: 用户-物品评分矩阵 :param item_similar: 物品两两相似度矩阵 :return: 预测的评分值 ''' print("开始预测用户<%d>对电影<%d>的评分..."%(uid, iid)) # 1. 找出iid物品的相似物品 similar_items = item_similar[iid].drop([iid]).dropna() # 相似物品筛选规则:正相关的物品 similar_items = similar_items.where(similar_items>0).dropna() if similar_items.empty is True: raise Exception("物品<%d>没有相似的物品" %id) # 2. 从iid物品的近邻相似物品中筛选出uid用户评分过的物品 ids = set(ratings_matrix.ix[uid].dropna().index)&set(similar_items.index) finally_similar_items = similar_items.ix[list(ids)] # 3. 结合iid物品与其相似物品的相似度和uid用户对其相似物品的评分,预测uid对iid的评分 sum_up = 0 # 评分预测公式的分子部分的值 sum_down = 0 # 评分预测公式的分母部分的值 for sim_iid, similarity in finally_similar_items.iteritems(): # 近邻物品的评分数据 sim_item_rated_movies = ratings_matrix[sim_iid].dropna() # uid用户对相似物品物品的评分 sim_item_rating_from_user = sim_item_rated_movies[uid] # 计算分子的值 sum_up += similarity * sim_item_rating_from_user # 计算分母的值 sum_down += similarity # 计算预测的评分值并返回 predict_rating = sum_up/sum_down print("预测出用户<%d>对电影<%d>的评分:%0.2f" % (uid, iid, predict_rating)) return round(predict_rating, 2) if __name__ == '__main__': ratings_matrix = load_data(DATA_PATH) item_similar = compute_pearson_similarity(ratings_matrix, based="item") # 预测用户1对物品1的评分 predict(1, 1, ratings_matrix, item_similar) # 预测用户1对物品2的评分 predict(1, 2, ratings_matrix, item_similar)
-
-
实现预测全部评分方法:
predict_all
# ...... def predict_all(uid, ratings_matrix, item_similar): ''' 预测全部评分 :param uid: 用户id :param ratings_matrix: 用户-物品打分矩阵 :param item_similar: 物品两两间的相似度 :return: 生成器,逐个返回预测评分 ''' # 准备要预测的物品的id列表 item_ids = ratings_matrix.columns # 逐个预测 for iid in item_ids: try: rating = predict(uid, iid, ratings_matrix, item_similar) except Exception as e: print(e) else: yield uid, iid, rating if __name__ == '__main__': ratings_matrix = load_data(DATA_PATH) item_similar = compute_pearson_similarity(ratings_matrix, based="item") for i in predict_all(1, ratings_matrix, item_similar): pass
-
添加过滤规则
def _predict_all(uid, item_ids,ratings_matrix, item_similar): ''' 预测全部评分 :param uid: 用户id :param item_ids: 要预测物品id列表 :param ratings_matrix: 用户-物品打分矩阵 :param item_similar: 物品两两间的相似度 :return: 生成器,逐个返回预测评分 ''' # 逐个预测 for iid in item_ids: try: rating = predict(uid, iid, ratings_matrix, item_similar) except Exception as e: print(e) else: yield uid, iid, rating def predict_all(uid, ratings_matrix, item_similar, filter_rule=None): ''' 预测全部评分,并可根据条件进行前置过滤 :param uid: 用户ID :param ratings_matrix: 用户-物品打分矩阵 :param item_similar: 物品两两间的相似度 :param filter_rule: 过滤规则,只能是四选一,否则将抛异常:"unhot","rated",["unhot","rated"],None :return: 生成器,逐个返回预测评分 ''' if not filter_rule: item_ids = ratings_matrix.columns elif isinstance(filter_rule, str) and filter_rule == "unhot": '''过滤非热门电影''' # 统计每部电影的评分数 count = ratings_matrix.count() # 过滤出评分数高于10的电影,作为热门电影 item_ids = count.where(count>10).dropna().index elif isinstance(filter_rule, str) and filter_rule == "rated": '''过滤用户评分过的电影''' # 获取用户对所有电影的评分记录 user_ratings = ratings_matrix.ix[uid] # 评分范围是1-5,小于6的都是评分过的,除此以外的都是没有评分的 _ = user_ratings<6 item_ids = _.where(_==False).dropna().index elif isinstance(filter_rule, list) and set(filter_rule) == set(["unhot", "rated"]): '''过滤非热门和用户已经评分过的电影''' count = ratings_matrix.count() ids1 = count.where(count > 10).dropna().index user_ratings = ratings_matrix.ix[uid] _ = user_ratings < 6 ids2 = _.where(_ == False).dropna().index # 取二者交集 item_ids = set(ids1)&set(ids2) else: raise Exception("无效的过滤参数") yield from _predict_all(uid, item_ids, ratings_matrix, item_similar) if __name__ == '__main__': ratings_matrix = load_data(DATA_PATH) item_similar = compute_pearson_similarity(ratings_matrix, based="item") for result in predict_all(1, ratings_matrix, item_similar, filter_rule=["unhot", "rated"]): print(result)
-
为指定用户推荐TOP-N结果
# ...... def top_k_rs_result(k): ratings_matrix = load_data(DATA_PATH) item_similar = compute_pearson_similarity(ratings_matrix, based="item") results = predict_all(1, ratings_matrix, item_similar, filter_rule=["unhot", "rated"]) return sorted(results, key=lambda x: x[2], reverse=True)[:k] if __name__ == '__main__': from pprint import pprint result = top_k_rs_result(20) pprint(result)