文章目录
二 根据用户行为数据创建ALS模型并召回商品
2.0 用户行为数据拆分
-
方便练习可以对数据做拆分处理
- pandas的数据分批读取 chunk 厚厚的一块 相当大的数量或部分
import pandas as pd reader = pd.read_csv('behavior_log.csv',chunksize=100,iterator=True) count = 0; for chunk in reader: count += 1 if count ==1: chunk.to_csv('test4.csv',index = False) elif count>1 and count<1000: chunk.to_csv('test4.csv',index = False, mode = 'a',header = False) else: break pd.read_csv('test4.csv')
2.1 预处理behavior_log数据集
- 创建spark session
import os
# 配置spark driver和pyspark运行时,所使用的python解释器路径
PYSPARK_PYTHON = "/miniconda2/envs/py365/bin/python"
JAVA_HOME='/root/bigdata/jdk'
SPARK_HOME = "/root/bigdata/spark"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON
os.environ['JAVA_HOME']=JAVA_HOME
os.environ["SPARK_HOME"] = SPARK_HOME
# spark配置信息
from pyspark import SparkConf
from pyspark.sql import SparkSession
SPARK_APP_NAME = "preprocessingBehaviorLog"
SPARK_URL = "spark://192.168.19.137:7077"
conf = SparkConf() # 创建spark config对象
config = (
("spark.app.name", SPARK_APP_NAME), # 设置启动的spark的app名称,没有提供,将随机产生一个名称
("spark.executor.memory", "6g"), # 设置该app启动时占用的内存用量,默认1g
("spark.master", SPARK_URL), # spark master的地址
("spark.executor.cores", "4"), # 设置spark executor使用的CPU核心数
# 以下三项配置,可以控制执行器数量
# ("spark.dynamicAllocation.enabled", True),
# ("spark.dynamicAllocation.initialExecutors", 1), # 1个执行器
# ("spark.shuffle.service.enabled", True)
# ('spark.sql.pivotMaxValues', '99999'), # 当需要pivot DF,且值很多时,需要修改,默认是10000
)
# 查看更详细配置及说明:https://spark.apache.org/docs/latest/configuration.html
conf.setAll(config)
# 利用config对象,创建spark session
spark = SparkSession.builder.config(conf=conf).getOrCreate()
- 从hdfs中加载csv文件为DataFrame
# 从hdfs加载CSV文件为DataFrame
df = spark.read.csv("hdfs://localhost:9000/data/behavior_log.csv", header=True)
df.show() # 查看dataframe,默认显示前20条
# 大致查看一下数据类型
df.printSchema() # 打印当前dataframe的结构
显示结果:
+------+----------+----+-----+------+
| user|time_stamp|btag| cate| brand|
+------+----------+----+-----+------+
|558157|1493741625| pv| 6250| 91286|
|558157|1493741626| pv| 6250| 91286|
|558157|1493741627| pv| 6250| 91286|
|728690|1493776998| pv|11800| 62353|
|332634|1493809895| pv| 1101|365477|
|857237|1493816945| pv| 1043|110616|
|619381|1493774638| pv| 385|428950|
|467042|1493772641| pv| 8237|301299|
|467042|1493772644| pv| 8237|301299|
|991528|1493780710| pv| 7270|274795|
|991528|1493780712| pv| 7270|274795|
|991528|1493780712| pv| 7270|274795|
|991528|1493780712| pv| 7270|274795|
|991528|1493780714| pv| 7270|274795|
|991528|1493780765| pv| 7270|274795|
|991528|1493780714| pv| 7270|274795|
|991528|1493780765| pv| 7270|274795|
|991528|1493780764| pv| 7270|274795|
|991528|1493780633| pv| 7270|274795|
|991528|1493780764| pv| 7270|274795|
+------+----------+----+-----+------+
only showing top 20 rows
root
|-- user: string (nullable = true)
|-- time_stamp: string (nullable = true)
|-- btag: string (nullable = true)
|-- cate: string (nullable = true)
|-- brand: string (nullable = true)
- 从hdfs加载数据为dataframe,并设置结构
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, LongType
# 构建结构对象
schema = StructType([
StructField("userId", IntegerType()),
StructField("timestamp", LongType()),
StructField("btag", StringType()),
StructField("cateId", IntegerType()),
StructField("brandId", IntegerType())
])
# 从hdfs加载数据为dataframe,并设置结构
behavior_log_df = spark.read.csv("hdfs://localhost:9000/data/behavior_log.csv", header=True, schema=schema)
behavior_log_df.show()
behavior_log_df.count()
显示结果:
+------+----------+----+------+-------+
|userId| timestamp|btag|cateId|brandId|
+------+----------+----+------+-------+
|558157|1493741625| pv| 6250| 91286|
|558157|1493741626| pv| 6250| 91286|
|558157|1493741627| pv| 6250| 91286|
|728690|1493776998| pv| 11800| 62353|
|332634|1493809895| pv| 1101| 365477|
|857237|1493816945| pv| 1043| 110616|
|619381|1493774638| pv| 385| 428950|
|467042|1493772641| pv| 8237| 301299|
|467042|1493772644| pv| 8237| 301299|
|991528|1493780710| pv| 7270| 274795|
|991528|1493780712| pv| 7270| 274795|
|991528|1493780712| pv| 7270| 274795|
|991528|1493780712| pv| 7270| 274795|
|991528|1493780714| pv| 7270| 274795|
|991528|1493780765| pv| 7270| 274795|
|991528|1493780714| pv| 7270| 274795|
|991528|1493780765| pv| 7270| 274795|
|991528|1493780764| pv| 7270| 274795|
|991528|1493780633| pv| 7270| 274795|
|991528|1493780764| pv| 7270| 274795|
+------+----------+----+------+-------+
only showing top 20 rows
root
|-- userId: integer (nullable = true)
|-- timestamp: long (nullable = true)
|-- btag: string (nullable = true)
|-- cateId: integer (nullable = true)
|-- brandId: integer (nullable = true)
- 分析数据集字段的类型和格式
- 查看是否有空值
- 查看每列数据的类型
- 查看每列数据的类别情况
print("查看userId的数据情况:", behavior_log_df.groupBy("userId").count().count())
# 约113w用户
#注意:behavior_log_df.groupBy("userId").count() 返回的是一个dataframe,这里的count计算的是每一个分组的个数,但当前还没有进行计算
# 当调用df.count()时才开始进行计算,这里的count计算的是dataframe的条目数,也就是共有多少个分组
查看user的数据情况: 1136340
print("查看btag的数据情况:", behavior_log_df.groupBy("btag").count().collect()) # collect会把计算结果全部加载到内存,谨慎使用
# 只有四种类型数据:pv、fav、cart、buy
# 这里由于类型只有四个,所以直接使用collect,把数据全部加载出来
查看btag的数据情况: [Row(btag='buy', count=9115919), Row(btag='fav', count=9301837), Row(btag='cart', count=15946033), Row(btag='pv', count=688904345)]
print("查看cateId的数据情况:", behavior_log_df.groupBy("cateId").count().count())
# 约12968类别id
查看cateId的数据情况: 12968
print("查看brandId的数据情况:", behavior_log_df.groupBy("brandId").count().count())
# 约460561品牌id
查看brandId的数据情况: 460561
print("判断数据是否有空值:", behavior_log_df.count(), behavior_log_df.dropna().count())
# 约7亿条目723268134 723268134
# 本数据集无空值条目,可放心处理
判断数据是否有空值: 723268134 723268134
- pivot透视操作,把某列里的字段值转换成行并进行聚合运算(pyspark.sql.GroupedData.pivot)
- 如果透视的字段中的不同属性值超过10000个,则需要设置spark.sql.pivotMaxValues,否则计算过程中会出现错误。文档介绍。
# 统计每个用户对各类商品的pv、fav、cart、buy数量
cate_count_df = behavior_log_df.groupBy(behavior_log_df.userId, behavior_log_df.cateId).pivot("btag",["pv","fav","cart","buy"]).count()
cate_count_df.printSchema() # 此时还没有开始计算
显示效果:
root
|-- userId: integer (nullable = true)
|-- cateId: integer (nullable = true)
|-- pv: long (nullable = true)
|-- fav: long (nullable = true)
|-- cart: long (nullable = true)
|-- buy: long (nullable = true)
- 统计每个用户对各个品牌的pv、fav、cart、buy数量并保存结果
# 统计每个用户对各个品牌的pv、fav、cart、buy数量
brand_count_df = behavior_log_df.groupBy(behavior_log_df.userId, behavior_log_df.brandId).pivot("btag",["pv","fav","cart","buy"]).count()
# brand_count_df.show() # 同上
# 113w * 46w
# 由于运算时间比较长,所以这里先将结果存储起来,供后续其他操作使用
# 写入数据时才开始计算
cate_count_df.write.csv("hdfs://localhost:9000/preprocessing_dataset/cate_count.csv", header=True)
brand_count_df.write.csv("hdfs://localhost:9000/preprocessing_dataset/brand_count.csv", header=True)
2.2 根据用户对类目偏好打分训练ALS模型
- 根据您统计的次数 + 打分规则 ==> 偏好打分数据集 ==> ALS模型
# spark ml的模型训练是基于内存的,如果数据过大,内存空间小,迭代次数过多的化,可能会造成内存溢出,报错
# 设置Checkpoint的话,会把所有数据落盘,这样如果异常退出,下次重启后,可以接着上次的训练节点继续运行
# 但该方法其实指标不治本,因为无法防止内存溢出,所以还是会报错
# 如果数据量大,应考虑的是增加内存、或限制迭代次数和训练数据量级等
spark.sparkContext.setCheckpointDir("hdfs://localhost:9000/checkPoint/")
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, LongType, FloatType
# 构建结构对象
schema = StructType([
StructField("userId", IntegerType()),
StructField("cateId", IntegerType()),
StructField("pv", IntegerType()),
StructField("fav", IntegerType()),
StructField("cart", IntegerType()),
StructField("buy", IntegerType())
])
# 从hdfs加载CSV文件
cate_count_df = spark.read.csv("hdfs://localhost:9000/preprocessing_dataset/cate_count.csv", header=True, schema=schema)
cate_count_df.printSchema()
cate_count_df.first() # 第一行数据
显示结果:
root
|-- userId: integer (nullable = true)
|-- cateId: integer (nullable = true)
|-- pv: integer (nullable = true)
|-- fav: integer (nullable = true)
|-- cart: integer (nullable = true)
|-- buy: integer (nullable = true)
Row(userId=1061650, cateId=4520, pv=2326, fav=None, cart=53, buy=None)
- 处理每一行数据:r表示row对象
def process_row(r):
# 处理每一行数据:r表示row对象
# 偏好评分规则:
# m: 用户对应的行为次数
# 该偏好权重比例,次数上限仅供参考,具体数值应根据产品业务场景权衡
# pv: if m<=20: score=0.2*m; else score=4
# fav: if m<=20: score=0.4*m; else score=8
# cart: if m<=20: score=0.6*m; else score=12
# buy: if m<=20: score=1*m; else score=20
# 注意这里要全部设为浮点数,spark运算时对类型比较敏感,要保持数据类型都一致
pv_count = r.pv if r.pv else 0.0
fav_count = r.fav if r.fav else 0.0
cart_count = r.cart if r.cart else 0.0
buy_count = r.buy if r.buy else 0.0
pv_score = 0.2*pv_count if pv_count<=20 else 4.0
fav_score = 0.4*fav_count if fav_count<=20 else 8.0
cart_score = 0.6*cart_count if cart_count<=20 else 12.0
buy_score = 1.0*buy_count if buy_count<=20 else 20.0
rating = pv_score + fav_score + cart_score + buy_score
# 返回用户ID、分类ID、用户对分类的偏好打分
return r.userId, r.cateId, rating
- 返回一个PythonRDD类型
# 返回一个PythonRDD类型,此时还没开始计算
cate_count_df.rdd.map(process_row).toDF(["userId", "cateId", "rating"])
显示结果:
DataFrame[userId: bigint, cateId: bigint, rating: double]
- 用户对商品类别的打分数据
# 用户对商品类别的打分数据
# map返回的结果是rdd类型,需要调用toDF方法转换为Dataframe
cate_rating_df = cate_count_df.rdd.map(process_row).toDF(["userId", "cateId", "rating"])
# 注意:toDF不是每个rdd都有的方法,仅局限于此处的rdd
# 可通过该方法获得 user-cate-matrix
# 但由于cateId字段过多,这里运算量比很大,机器内存要求很高才能执行,否则无法完成任务
# 请谨慎使用
# 但好在我们训练ALS模型时,不需要转换为user-cate-matrix,所以这里可以不用运行
# cate_rating_df.groupBy("userId").povit("cateId").min("rating")
# 用户对类别的偏好打分数据
cate_rating_df
显示结果:
DataFrame[userId: bigint, cateId: bigint, rating: double]
- 通常如果USER-ITEM打分数据应该是通过一下方式进行处理转换为USER-ITEM-MATRIX
但这里我们将使用的Spark的ALS模型进行CF推荐,因此注意这里数据输入不需要提前转换为矩阵,直接是 USER-ITEM-RATE的数据
-
基于Spark的ALS隐因子模型进行CF评分预测
-
ALS的意思是交替最小二乘法(Alternating Least Squares),是Spark2.*中加入的进行基于模型的协同过滤(model-based CF)的推荐系统算法。
同SVD,它也是一种矩阵分解技术,对数据进行降维处理。
-
注意:由于数据量巨大,因此这里也不考虑基于内存的CF算法
-
# 使用pyspark中的ALS矩阵分解方法实现CF评分预测
# 文档地址:https://spark.apache.org/docs/2.2.2/api/python/pyspark.ml.html?highlight=vectors#module-pyspark.ml.recommendation
from pyspark.ml.recommendation import ALS # ml:dataframe, mllib:rdd
# 利用打分数据,训练ALS模型
als = ALS(userCol='userId', itemCol='cateId', ratingCol='rating', checkpointInterval=5)
# 此处训练时间较长
model = als.fit(cate_rating_df)
- 模型训练好后,调用方法进行使用,具体API查看
# model.recommendForAllUsers(N) 给所有用户推荐TOP-N个物品
ret = model.recommendForAllUsers(3)
# 由于是给所有用户进行推荐,此处运算时间也较长
ret.show()
# 推荐结果存放在recommendations列中,
ret.select("recommendations").show()
显示结果:
+------+--------------------+
|userId| recommendations|
+------+--------------------+
| 148|[[3347, 12.547271...|
| 463|[[1610, 9.250818]...|
| 471|[[1610, 10.246621...|
| 496|[[1610, 5.162216]...|
| 833|[[5607, 9.065482]...|
| 1088|[[104, 6.886987],...|
| 1238|[[5631, 14.51981]...|
| 1342|[[5720, 10.89842]...|
| 1580|[[5731, 8.466453]...|
| 1591|[[1610, 12.835257...|
| 1645|[[1610, 11.968531...|
| 1829|[[1610, 17.576496...|
| 1959|[[1610, 8.353473]...|
| 2122|[[1610, 12.652732...|
| 2142|[[1610, 12.48068]...|
| 2366|[[1610, 11.904813...|
| 2659|[[5607, 11.699315...|
| 2866|[[1610, 7.752719]...|
| 3175|[[3347, 2.3429515...|
| 3749|[[1610, 3.641833]...|
+------+--------------------+
only showing top 20 rows
+--------------------+
| recommendations|
+--------------------+
|[[3347, 12.547271...|
|[[1610, 9.250818]...|
|[[1610, 10.246621...|
|[[1610, 5.162216]...|
|[[5607, 9.065482]...|
|[[104, 6.886987],...|
|[[5631, 14.51981]...|
|[[5720, 10.89842]...|
|[[5731, 8.466453]...|
|[[1610, 12.835257...|
|[[1610, 11.968531...|
|[[1610, 17.576496...|
|[[1610, 8.353473]...|
|[[1610, 12.652732...|
|[[1610, 12.48068]...|
|[[1610, 11.904813...|
|[[5607, 11.699315...|
|[[1610, 7.752719]...|
|[[3347, 2.3429515...|
|[[1610, 3.641833]...|
+--------------------+
only showing top 20 rows
- model.recommendForUserSubset 给部分用户推荐TOP-N个物品
# 注意:recommendForUserSubset API,2.2.2版本中无法使用
dataset = spark.createDataFrame([[1],[2],[3]])
dataset = dataset.withColumnRenamed("_1", "userId")
ret = model.recommendForUserSubset(dataset, 3)
# 只给部分用推荐,运算时间短
ret.show()
ret.collect() # 注意: collect会将所有数据加载到内存,慎用
显示结果:
+------+--------------------+
|userId| recommendations|
+------+--------------------+
| 1|[[1610, 25.4989],...|
| 3|[[5607, 13.665942...|
| 2|[[5579, 5.9051886...|
+------+--------------------+
[Row(userId=1, recommendations=[Row(cateId=1610, rating=25.498899459838867), Row(cateId=5737, rating=24.901548385620117), Row(cateId=3347, rating=20.736785888671875)]),
Row(userId=3, recommendations=[Row(cateId=5607, rating=13.665942192077637), Row(cateId=1610, rating=11.770171165466309), Row(cateId=3347, rating=10.35690689086914)]),
Row(userId=2, recommendations=[Row(cateId=5579, rating=5.90518856048584), Row(cateId=2447, rating=5.624575138092041), Row(cateId=5690, rating=5.2555742263793945)])]
- transform中提供userId和cateId可以对打分进行预测,利用打分结果排序后
# transform中提供userId和cateId可以对打分进行预测,利用打分结果排序后,同样可以实现TOP-N的推荐
model.transform
# 将模型进行存储
model.save("hdfs://localhost:9000/models/userCateRatingALSModel.obj")
# 测试存储的模型
from pyspark.ml.recommendation import ALSModel
# 从hdfs加载之前存储的模型
als_model = ALSModel.load("hdfs://localhost:9000/models/userCateRatingALSModel.obj")
# model.recommendForAllUsers(N) 给用户推荐TOP-N个物品
result = als_model.recommendForAllUsers(3)
result.show()
显示结果:
+------+--------------------+
|userId| recommendations|
+------+--------------------+
| 148|[[3347, 12.547271...|
| 463|[[1610, 9.250818]...|
| 471|[[1610, 10.246621...|
| 496|[[1610, 5.162216]...|
| 833|[[5607, 9.065482]...|
| 1088|[[104, 6.886987],...|
| 1238|[[5631, 14.51981]...|
| 1342|[[5720, 10.89842]...|
| 1580|[[5731, 8.466453]...|
| 1591|[[1610, 12.835257...|
| 1645|[[1610, 11.968531...|
| 1829|[[1610, 17.576496...|
| 1959|[[1610, 8.353473]...|
| 2122|[[1610, 12.652732...|
| 2142|[[1610, 12.48068]...|
| 2366|[[1610, 11.904813...|
| 2659|[[5607, 11.699315...|
| 2866|[[1610, 7.752719]...|
| 3175|[[3347, 2.3429515...|
| 3749|[[1610, 3.641833]...|
+------+--------------------+
only showing top 20 rows
- 召回到redis
import redis
host = "192.168.19.137"
port = 6379
# 召回到redis
def recall_cate_by_cf(partition):
# 建立redis 连接池
pool = redis.ConnectionPool(host=host, port=port)
# 建立redis客户端
client = redis.Redis(connection_pool=pool)
for row in partition:
client.hset("recall_cate", row.userId, [i.cateId for i in row.recommendations])
# 对每个分片的数据进行处理 #mapPartitions Transformation map
# foreachPartition Action操作 foreachRDD
result.foreachPartition(recall_cate_by_cf)
# 注意:这里这是召回的是用户最感兴趣的n个类别
# 总的条目数,查看redis中总的条目数是否一致
result.count()
显示结果:
1136340
2.3 根据用户对品牌偏好打分训练ALS模型
from pyspark.sql.types import StructType, StructField, StringType, IntegerType
schema = StructType([
StructField("userId", IntegerType()),
StructField("brandId", IntegerType()),
StructField("pv", IntegerType()),
StructField("fav", IntegerType()),
StructField("cart", IntegerType()),
StructField("buy", IntegerType())
])
# 从hdfs加载预处理好的品牌的统计数据
brand_count_df = spark.read.csv("hdfs://localhost:9000/preprocessing_dataset/brand_count.csv", header=True, schema=schema)
# brand_count_df.show()
def process_row(r):
# 处理每一行数据:r表示row对象
# 偏好评分规则:
# m: 用户对应的行为次数
# 该偏好权重比例,次数上限仅供参考,具体数值应根据产品业务场景权衡
# pv: if m<=20: score=0.2*m; else score=4
# fav: if m<=20: score=0.4*m; else score=8
# cart: if m<=20: score=0.6*m; else score=12
# buy: if m<=20: score=1*m; else score=20
# 注意这里要全部设为浮点数,spark运算时对类型比较敏感,要保持数据类型都一致
pv_count = r.pv if r.pv else 0.0
fav_count = r.fav if r.fav else 0.0
cart_count = r.cart if r.cart else 0.0
buy_count = r.buy if r.buy else 0.0
pv_score = 0.2*pv_count if pv_count<=20 else 4.0
fav_score = 0.4*fav_count if fav_count<=20 else 8.0
cart_score = 0.6*cart_count if cart_count<=20 else 12.0
buy_score = 1.0*buy_count if buy_count<=20 else 20.0
rating = pv_score + fav_score + cart_score + buy_score
# 返回用户ID、品牌ID、用户对品牌的偏好打分
return r.userId, r.brandId, rating
# 用户对品牌的打分数据
brand_rating_df = brand_count_df.rdd.map(process_row).toDF(["userId", "brandId", "rating"])
# brand_rating_df.show()
-
基于Spark的ALS隐因子模型进行CF评分预测
-
ALS的意思是交替最小二乘法(Alternating Least Squares),是Spark中进行基于模型的协同过滤(model-based CF)的推荐系统算法,也是目前Spark内唯一一个推荐算法。
同SVD,它也是一种矩阵分解技术,但理论上,ALS在海量数据的处理上要优于SVD。
更多了解:pyspark.ml.recommendation.ALS
注意:由于数据量巨大,因此这里不考虑基于内存的CF算法
-
-
使用pyspark中的ALS矩阵分解方法实现CF评分预测
# 使用pyspark中的ALS矩阵分解方法实现CF评分预测
# 文档地址:https://spark.apache.org/docs/latest/api/python/pyspark.ml.html?highlight=vectors#module-pyspark.ml.recommendation
from pyspark.ml.recommendation import ALS
als = ALS(userCol='userId', itemCol='brandId', ratingCol='rating', checkpointInterval=2)
# 利用打分数据,训练ALS模型
# 此处训练时间较长
model = als.fit(brand_rating_df)
# model.recommendForAllUsers(N) 给用户推荐TOP-N个物品
model.recommendForAllUsers(3).show()
# 将模型进行存储
model.save("hdfs://localhost:9000/models/userBrandRatingModel.obj")
# 测试存储的模型
from pyspark.ml.recommendation import ALSModel
# 从hdfs加载模型
my_model = ALSModel.load("hdfs://localhost:9000/models/userBrandRatingModel.obj")
my_model
# model.recommendForAllUsers(N) 给用户推荐TOP-N个物品
my_model.recommendForAllUsers(3).first()