模型融合是什么

我理解的Kaggle比赛中提高成绩主要有3个地方

  1. 特征工程
  2. 调参
  3. 模型融合

模型融合是kaggle等比赛中经常使用到的一个利器,它通常可以在各种不同的机器学习任务中使结果获得提升。顾名思义,模型融合就是综合考虑不同模型的情况,并将它们的结果融合到一起。模型融合主要通过几部分来实现:从提交结果文件中融合、stacking和blending。

模型融合的类型

  1. 简单加权融合:

    • 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);
    • 分类:投票(Voting)
    • 综合:排序融合(Rank averaging),log融合
  2. stacking/blending:

    • 构建多层模型,并利用预测结果再拟合预测。
  3. boosting/bagging(在xgboost,Adaboost,GBDT中已经用到):

    • 多树的提升方法

Stacking相关理论

数据的行数:train.csv有890行,也就是890个人,test.csv有418行(418个人)。

而数据的列数就看你保留了多少个feature了,因人而异。我自己的train保留了 7+1(1是预测列)。

在网上为数不多的stacking内容里,相信你早看过了这张图:


这张图,如果你能一下子就能看懂,那就OK。

如果一下子看不懂,就麻烦了,在接下来的一段时间内,你就会卧槽卧槽地持续懵逼…

因为这张图极具‘误导性’。(注意!我没说这图是错的,尽管它就是错的!!!但是在网上为数不多教学里有张***图就不错啦,感恩吧,我这个小弱鸡)。

我把图改了一下:


对于每一轮的 5-fold,Model 1都要做满5次的训练和预测。
Titanic 栗子:

Train Data有890行。(请对应图中的上层部分)

每1次的fold,都会生成 713行 小train, 178行 小test。我们用Model 1来训练 713行的小train,然后预测 178行 小test。预测的结果是长度为 178 的预测值。

这样的动作走5次! 长度为178 的预测值 X 5 = 890 预测值,刚好和Train data长度吻合。这个890预测值是Model 1产生的,我们先存着,因为,一会让它将是第二层模型的训练来源。

重点:这一步产生的预测值我们可以转成 890 X 1 (890 行,1列),记作 P1 (大写P)

接着说 Test Data 有 418 行。(请对应图中的下层部分,对对对,绿绿的那些框框)

每1次的fold,713行 小train训练出来的Model 1要去预测我们全部的Test Data(全部!因为Test Data没有加入5-fold,所以每次都是全部!)。此时,Model 1的预测结果是长度为418的预测值。

这样的动作走5次!我们可以得到一个 5 X 418 的预测值矩阵。然后我们根据行来就平均值,最后得到一个 1 X 418 的平均预测值。

重点:这一步产生的预测值我们可以转成 418 X 1 (418行,1列),记作 p1 (小写p)

走到这里,你的第一层的Model 1完成了它的使命。

第一层还会有其他Model的,比如Model 2,同样的走一遍, 我们有可以得到 890 X 1 (P2) 和 418 X 1 (p2) 列预测值。

这样吧,假设你第一层有3个模型,这样你就会得到:

来自5-fold的预测值矩阵 890 X 3,(P1,P2, P3) 和 来自Test Data预测值矩阵 418 X 3, (p1, p2, p3)。


到第二层了…

来自5-fold的预测值矩阵 890 X 3 作为你的Train Data,训练第二层的模型
来自Test Data预测值矩阵 418 X 3 就是你的Test Data,用训练好的模型来预测他们吧。


最后 ,放出一张Python的Code,在网上为数不多的stacking内容里, 这个几行的code你也早就看过了吧,我之前一直卡在这里,现在加上一点点注解,希望对你有帮助:

本次比赛的代码

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 

import numpy as np
import pandas as pd

## 定义结果的加权平均函数
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
    Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
    return Weighted_result


from sklearn import metrics
# 各模型的预测结果计算MAE
print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))



## 根据加权计算MAE
w = [0.3,0.4,0.3] # 定义比重权值
Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))

## 定义结果的加权平均函数
def Mean_method(test_pre1,test_pre2,test_pre3):
    Mean_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).mean(axis=1)
    return Mean_result



Mean_pre = Mean_method(test_pre1,test_pre2,test_pre3)
print('Mean_pre MAE:',metrics.mean_absolute_error(y_test_true, Mean_pre))

## 定义结果的加权平均函数
def Median_method(test_pre1,test_pre2,test_pre3):
    Median_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).median(axis=1)
    return Median_result



Median_pre = Median_method(test_pre1,test_pre2,test_pre3)
print('Median_pre MAE:',metrics.mean_absolute_error(y_test_true, Median_pre))

stacking融合(回归)

from sklearn import linear_model

def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,model_L2= linear_model.LinearRegression()):
    model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=1).values,y_train_true)
    Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).values)
    return Stacking_result
## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
train_reg1 = [3.2, 8.2, 9.1, 5.2]
train_reg2 = [2.9, 8.1, 9.0, 4.9]
train_reg3 = [3.1, 7.9, 9.2, 5.0]
# y_test_true 代表第模型的真实值
y_train_true = [3, 8, 9, 5] 

test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 
model_L2= linear_model.LinearRegression()
Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,
                               test_pre1,test_pre2,test_pre3,model_L2)
print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))

分类模型的融合

## 这里我们采取了简单的加权融合的方式
val_Weighted = (1-MAE_lgb/(MAE_xgb+MAE_lgb))*val_lgb+(1-MAE_xgb/(MAE_xgb+MAE_lgb))*val_xgb
val_Weighted[val_Weighted<0]=10 # 由于我们发现预测的最小值有负数,而真实情况下,price为负是不存在的,由此我们进行对应的后修正
print('MAE of val with Weighted ensemble:',mean_absolute_error(y_val,val_Weighted))

sub_Weighted = (1-MAE_lgb/(MAE_xgb+MAE_lgb))*subA_lgb+(1-MAE_xgb/(MAE_xgb+MAE_lgb))*subA_xgb

## 查看预测值的统计进行
plt.hist(Y_data)
plt.show()
plt.close()


输出结果:

sub = pd.DataFrame()
sub['SaleID'] = X_test.index
sub['price'] = sub_Weighted
sub.to_csv('./sub_Weighted.csv',index=False)
sub.head()