SGDM(带冲量的随机梯度下降)是SGD的一种改进,在SGD的基础上增加了冲量,可以加速收敛。 简单点说,就是每次更新参数时,不仅考虑当前的梯度,还考虑之前的梯度。使用动量代替梯度。 梯度下降以及批量梯度下降的原理不再赘述,这里只给出SGDM的公式:

其中, 是第 次迭代时的参数, 是学习率, 是第 次迭代时的梯度, 是冲量系数。

代码实现:

def sgdm_linear_regression(X, y, learning_rate, momentum_decay, epochs):
    m, n = X.shape
    theta = np.zeros((n, 1))
    v = np.zeros((n, 1))
    for _ in range(epochs):
        y_pred = np.dot(X, theta)  # 计算预测值
        error = y_pred - y  # 计算误差
        gradient = (1 / m) * np.dot(X.T, error)  # 计算梯度
        v = momentum_decay * v + learning_rate * gradient  # 更新动量
        theta -= v  # 更新参数
    return np.round(theta.flatten(), 2).tolist()