模型的保存方法

第一步:实例化

在会话的前面

# 添加一个saver保存模型!!!!!!!!!!!!!!
saver = tf.train.Saver()#实例化

第二步:模型的保存

saver.save(sess, "./summary/ckpt/linear/linear_regression.ckpt")

案例

import tensorflow as tf

with tf.variable_scope("lr_model"):
    def linear_regression():#定义名字
        # 1)准备好数据集:y = 0.8x + 0.7 100个样本
        # 特征值X, 目标值y_true
        with tf.variable_scope("original_data"):#定义名字
            X = tf.random_normal(shape=(100, 1), mean=2, stddev=2, name="original_data_x")
            # y_true [100, 1]
            # 矩阵运算 X(100, 1)* (1, 1)= y_true(100, 1)
            y_true = tf.matmul(X, [[0.8]], name="original_matmul") + 0.7

        # 2)建立线性模型:
        # y = W·X + b,目标:求出权重W和偏置b
        # 3)随机初始化W1和b1

        with tf.variable_scope("linear_model"):#定义名字
            weights = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)), name="weights")
            bias = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)), name="bias")
            y_predict = tf.matmul(X, weights, name="model_matmul") + bias

        # 4)确定损失函数(预测值与真实值之间的误差)-均方误差
        with tf.variable_scope("loss"):#定义名字
            error = tf.reduce_mean(tf.square(y_predict - y_true), name="error_op")

        # 5)梯度下降优化损失:需要指定学习率(超参数)
        # W2 = W1 - 学习率*(方向)
        # b2 = b1 - 学习率*(方向)
        with tf.variable_scope("gd_optimizer"):#定义名字
            optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01, name="optimizer").minimize(error)

        # 2)收集变量
        tf.summary.scalar("error", error)##生成准确率标量图
        tf.summary.histogram("weights", weights)#用来显示直方图信息
        tf.summary.histogram("bias", bias)#用来显示直方图信息

        # 3)合并变量
        merge = tf.summary.merge_all()

        # 添加一个saver保存模型!!!!!!!!!!!!!!
        saver = tf.train.Saver()#实例化

        # 初始化变量
        init = tf.global_variables_initializer()
        # 开启会话进行训练
        with tf.Session() as sess:
            # 运行初始化变量Op
            sess.run(init)
            print("随机初始化的权重为%f, 偏置为%f" % (weights.eval(), bias.eval()))
            # 1)创建事件文件【重要】
            file_writer = tf.summary.FileWriter(logdir="./summary", graph=sess.graph)
            # 训练模型
            for i in range(3000):
                sess.run(optimizer)
                print("第%d步的误差为%f,权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))
                # 4)运行合并变量op
                summary = sess.run(merge)
                file_writer.add_summary(summary, i)#i保留每一次的数量
                # 训练过程比较长,保存一下,只会保存最近的五个!!!!!!!!
                saver.save(sess, "./summary/ckpt/linear/linear_regression.ckpt")




if __name__ == '__main__':
    linear_regression()

训练了一半的模型继续训练

情景:我们之前已经训练了3000步了,保存了,但是结果不是很满意,想要继续在3000的基础上训练

第一步:加载之前的模型

在训练之前

#加载历史模型
saver.restore(sess, "./summary/ckpt/linear/linear_regression.ckpt")

案例

import tensorflow as tf

with tf.variable_scope("lr_model"):
    def linear_regression():#定义名字
        # 1)准备好数据集:y = 0.8x + 0.7 100个样本
        # 特征值X, 目标值y_true
        with tf.variable_scope("original_data"):#定义名字
            X = tf.random_normal(shape=(100, 1), mean=2, stddev=2, name="original_data_x")
            # y_true [100, 1]
            # 矩阵运算 X(100, 1)* (1, 1)= y_true(100, 1)
            y_true = tf.matmul(X, [[0.8]], name="original_matmul") + 0.7

        # 2)建立线性模型:
        # y = W·X + b,目标:求出权重W和偏置b
        # 3)随机初始化W1和b1

        with tf.variable_scope("linear_model"):#定义名字
            weights = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)), name="weights")
            bias = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)), name="bias")
            y_predict = tf.matmul(X, weights, name="model_matmul") + bias

        # 4)确定损失函数(预测值与真实值之间的误差)-均方误差
        with tf.variable_scope("loss"):#定义名字
            error = tf.reduce_mean(tf.square(y_predict - y_true), name="error_op")

        # 5)梯度下降优化损失:需要指定学习率(超参数)
        # W2 = W1 - 学习率*(方向)
        # b2 = b1 - 学习率*(方向)
        with tf.variable_scope("gd_optimizer"):#定义名字
            optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01, name="optimizer").minimize(error)

        # 2)收集变量
        tf.summary.scalar("error", error)##生成准确率标量图
        tf.summary.histogram("weights", weights)#用来显示直方图信息
        tf.summary.histogram("bias", bias)#用来显示直方图信息

        # 3)合并变量
        merge = tf.summary.merge_all()

        # 添加一个saver保存模型!!!!!!!!!!!!!!
        saver = tf.train.Saver()#实例化

        # 初始化变量
        init = tf.global_variables_initializer()
        # 开启会话进行训练
        with tf.Session() as sess:
            # 运行初始化变量Op
            sess.run(init)
            print("随机初始化的权重为%f, 偏置为%f" % (weights.eval(), bias.eval()))
            # 第2999步的误差为0 .000000,权重为0 .799999, 偏置为0 .700002
            # 1)创建事件文件【重要】
            file_writer = tf.summary.FileWriter(logdir="./summary", graph=sess.graph)

            #加载历史模型
            saver.restore(sess, "./summary/ckpt/linear/linear_regression.ckpt")

            # 训练模型
            for i in range(1000):
                sess.run(optimizer)
                print("第%d步的误差为%f,权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))
                # 4)运行合并变量op
                summary = sess.run(merge)
                file_writer.add_summary(summary, i)#i保留每一次的数量
                # 训练过程比较长,保存一下,只会保存最近的五个!!!!!!!!
                saver.save(sess, "./summary/ckpt/linear/linear_regression.ckpt2")




if __name__ == '__main__':
    linear_regression()