给之前画出来的立方体加一个围绕它转的光源。

一、代码

  • main.cpp
#include <iostream>

// GLEW
#define GLEW_STATIC
#include <GL/glew.h>

// GLFW
#include <GLFW/glfw3.h>

// Shader
#include "Shader.h"

// SOIL2
// Linux 用的是 \, 但是 / 都可以用
#include "SOIL2/SOIL2.h" 
#include "SOIL2/stb_image.h"

// 在 include 前增加这一句,才能使用 transform.hpp
#define GLM_ENABLE_EXPERIMENTAL

// glm
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp> //需要什么变换,就导入什么文件,具体可以去官网看
#include <glm/gtc/type_ptr.hpp>
#include <glm/gtx/rotate_vector.hpp> //旋转

#include "Camera.h" //当前引用,所以用""

const GLint WIDTH = 800, HEIGHT = 600;  //新建窗口

// 键盘操作回应
void KeyCallback(GLFWwindow *window, int key, int scancode, int action, int mode);
// 鼠标操作回应
void MouseCallback(GLFWwindow *window, double xPos, double yPos);
// 移动
void DoMovement();


// 初始化一个相机
Camera camera(glm::vec3(0.0f, 0.0f, 2.0f));
// 设置初始量
GLfloat lastX = WIDTH / 2.0;
GLfloat lastY = HEIGHT / 2.0;
bool firstMouse = true;

// 设置光源坐标
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);

bool keys[1024];  //存放获取的所有键盘操作,先存下来再进行操作

GLfloat deltaTime = 0.0f;  //两帧之间的间隔时间
GLfloat lastTime = 0.0f;  //上一帧绘制的时间

int main()
{
	glfwInit();
	// OpenGL 版本
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	// 窗口设置
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);  //用的是新版的 OpenGL 3.3
	glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // must for Mac
	glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);  //改为 GL_TRUE,改变窗口,纵横比会变
	GLFWwindow *window = glfwCreateWindow(WIDTH, HEIGHT, "Learn OpenGL B16112011", nullptr,
		nullptr);  //窗口名字改成自己的学号

	if (nullptr == window)
	{
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
	}

	// next two lines are for mac retina display
	int screenWidth, screenHeight;
	glfwGetFramebufferSize(window, &screenWidth, &screenHeight);  //获取窗口大小

	glfwMakeContextCurrent(window);  //可以新建很多 window

	// Set the required callback function
	// KeyCallback 是响应键盘消息的回调函数
	glfwSetKeyCallback(window, KeyCallback);
	// MouseCallback 是响应鼠标消息的回调函数
	glfwSetCursorPosCallback(window, MouseCallback);
	glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);  //不允许鼠标出现在屏幕中
	glewExperimental = GL_TRUE;
	if (GLEW_OK != glewInit())
	{
		std::cout << "Failed to initialise GLEW" << std::endl;
		return -1;
	}
	glViewport(0, 0, screenWidth, screenHeight);  //从(0,0)开始画点,直到 WIDTH 和 HEIGHT

	//glEnable(GL_CULL_FACE); //只显示一半
	//glEnable(GL_DEPTH_TEST); //深度测试
	//glDepthFunc(GL_LESS); //深度信息小于当期信息,就把进行测试

	/* // 启动透明度混合,固定不能改,alpha 线性混合:设置当前为 α ,其他就为 1- α glEnable(GL_BLEND); // 表示把渲染的图像融合到目标区域。也就是说源的每一个像素的alpha都等于自己的alpha, // 目标的每一个像素的alpha等于1减去该位置源像素的alpha。因此不论叠加多少次,亮度是不变的。 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); */

	// vs 是顶点调色器,frag 是边缘(片段)调色器
	Shader ourShader = Shader("core1.vs", "core1.frag");  //文件相对路径

	// 光源调色器
	Shader lightShader = Shader("light.vs", "light.frag");

	// now the verte information comes below
	float vertices[] = {
	-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	 0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	-0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,

	-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	 0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	-0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,

	-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

	 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

	-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
	 0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
	 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
	 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
	-0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
	-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

	-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
	-0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
	-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
	};

	// the date should be transfered to the memory on the Graphics Card,传到显存
	GLuint VAO, VBO;  //VAO:Vertex Array Object VBO:Vertex Buffer Object传数据
	glGenVertexArrays(1, &VAO);  //创建 VAO
	glGenBuffers(1, &VBO);
	glBindVertexArray(VAO);  //设当前直线
	glBindBuffer(GL_ARRAY_BUFFER, VBO);  //VAO 和 VBO 成对出现
	// transfer the data:传数据
	glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);  //静态访问,几乎不修改
	// set the attribute
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE,
		6 * sizeof(GLfloat), (GLvoid *)0);  //0:对应调色器里 location 的值;3:对应 vec3 三个量;GL_FLOAT:浮点型;GL_FALSE:;6*sizeof(GLfloat):对应 Buffer 里传的数据;(GLvoid*)0:从第 0 个位置开始
	glEnableVertexAttribArray(0);
	// 法向量
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE,
		6 * sizeof(GLfloat), (GLvoid *)(3 * sizeof(GLfloat)));  //1:对应调色器里 location 的值;3:对应 vec3 三个量;GL_FLOAT:浮点型;GL_FALSE:;6*sizeof(GLfloat):对应 Buffer 里传的数据;(GLvoid *)(3 * sizeof(GLfloat)):从第 3 个位置开始
	glEnableVertexAttribArray(1);

	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindVertexArray(0);

	// 为光源创建一个新的 VAO
	GLuint lightVAO;
	glGenVertexArrays(1, &lightVAO);
	// 绑定光源 VAO
	glBindVertexArray(lightVAO);
	// 只需要绑定VBO不用再次设置VBO的数据,因为容器(物体)的VBO数据中已经包含了正确的立方体顶点数据
	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	// 设置光源的顶点属性指针(仅设置灯的顶点数据)
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE,
		6 * sizeof(GLfloat), (GLvoid *)0);  //0:对应调色器里 location 的值;3:对应 vec3 三个量;GL_FLOAT:浮点型;GL_FALSE:;6*sizeof(GLfloat):对应 Buffer 里传的数据;(GLvoid*)0:从第 0 个位置开始
	glEnableVertexAttribArray(0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindVertexArray(0);

	glm::mat4 view = glm::mat4(1.0f);  //初始化 4 * 4 单位矩阵
	// 正交投影:第一个窗口是 FoV 视域。默认焦距是 1 。
	// 第二个参数是长宽比。
	// 近:0.1f。远:1000.0f。
	glm::mat4 projection = glm::perspective(glm::radians(camera.
		GetZoom()), static_cast<GLfloat>(screenWidth) / static_cast<
		GLfloat>(screenHeight), 0.1f, 1000.0f);
	// 画图
	while (!glfwWindowShouldClose(window))
	{
		//旋转角度为 0.01f
		lightPos = glm::rotate(lightPos, 0.01f, glm::vec3(1.0f, 1.0f, 0.0f));

		GLfloat currentFrame = glfwGetTime();  //屏幕刚画出来的时间
		deltaTime = currentFrame - lastTime;  //更新两帧之间的间隔时间
		lastTime = currentFrame;  //更新上一帧绘制的时间
		glfwPollEvents();  //把所有事件系统都取过来:键盘/鼠标等操作
		DoMovement();  //获取完操作之后的额外参数
		glClearColor(0.2f, 0.3f, 0.3f, 1.0f);  //窗口背景颜色,RGB,最后一个是透明度
		glClear(GL_COLOR_BUFFER_BIT);
		//Bind the shader
		ourShader.Use();
		// 正交投影:第一个窗口是 FoV 视域。默认焦距是 1 。
		// 第二个参数是长宽比。
		// 近:0.1f。远:1000.0f。
		glm::mat4 model = glm::mat4(1.0f);  //model
		model = glm::rotate(model, glm::radians(20.0f) * static_cast<GLfloat>
			(glfwGetTime()), glm::vec3(1.0f, 1.0f, 1.0f));

		view = camera.GetViewMatrix();

		//glm 从 0.9.9 版本起,默认会将矩阵类型初始化为一个零矩阵(所有元素均为 0)
		//glm::mat4 transform = glm::mat4(1.0f); //初始化 4 * 4 单位矩阵

		//旋转
		//GLM 希望它的角度是弧度制,radians 将角度转化为弧度制
		//glfwGetTime():让图形一直变换,做一个类型转换,用 static_cast<GLfloat>,设为 GLfloat 型
		//glm::vec3(1.0f, 1.0f, 1.0f),分别绕 x 轴、y 轴、z 轴进行旋转,如果都为 1.0f,就是绕和向量 (1,1,1) 转
		//transform = glm::rotate(transform, glm::radians(20.0f) * static_cast<GLfloat>(glfwGetTime()), glm::vec3(1.0f, 1.0f, 1.0f));

		//缩放,x、y、z 都缩放到原来的 0.5 倍
		//transform = glm::scale(transform, glm::vec3(0.5f, 0.5f, 0.5f));

		//平移
		//transform = 

		// 得到 uniform 位置
		GLuint modelLoc = glGetUniformLocation(ourShader.Program, "model");  //到 vs 找到那个 model 变量
		GLuint viewLoc = glGetUniformLocation(ourShader.Program, "view");  //到 vs 找到那个 view 变量
		GLuint projectionLoc = glGetUniformLocation(ourShader.Program, "projection");  //到 vs 找到那个 projection 变量
		//GLuint transLoc = glGetUniformLocation(ourShader.Program, "transform"); //到 vs 找到那个 transform 变量
		// Matrix4fv:4维矩阵,fv:浮点类型
		// transLoc:变量 uniform 的位置
		// 1:代表只传入一个矩阵
		// GL_FALSE:不对矩阵进行置换,即不交换矩阵的行和列。GLM 的默认布局就是列主序,所以并不需要置换矩阵
		// 最后:直接给出 transform 矩阵数组,这里我们要把矩阵转换成数组的格式传递。
		//glUniformMatrix4fv(transLoc, 1, GL_FALSE, glm::value_ptr(transform)); //glUniformMatrix4fv:四个坐标 glUniform4fv:三个坐标

		// Matrix4fv:4维矩阵,fv:浮点类型
		// modelLoc:变量 model 的位置
		// 1:代表只传入一个矩阵
		// GL_FALSE:不对矩阵进行置换,即不交换矩阵的行和列。GLM 的默认布局就是列主序,所以并不需要置换矩阵
		// 最后:直接给出 model 矩阵数组,这里我们要把矩阵转换成数组的格式传递。
		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
		glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));

		// 首先使用对应的着色器程序(来设定uniform)
		GLint objectColorLoc = glGetUniformLocation(ourShader.Program, "objectColor");
		GLint lightColorLoc = glGetUniformLocation(ourShader.Program, "lightColor");
		GLint lightPosLoc = glGetUniformLocation(ourShader.Program, "lightPos");
		GLint viewPosLoc = glGetUniformLocation(ourShader.Program, "viewPos");

		glUniform3f(objectColorLoc, 1.0f, 0.5f, 0.3f);  //珊瑚红
		glUniform3f(lightColorLoc, 1.0f, 1.0f, 1.0f);  //把光源设置为白色
		glUniform3f(lightPosLoc, lightPos.x, lightPos.y, lightPos.z);
		glUniform3f(viewPosLoc, camera.GetPosition().x, camera.
			GetPosition().y, camera.GetPosition().z);  //使用摄像机对象的位置坐标代替

		// Draw the triangle
		glBindVertexArray(VAO);  //使用 VAO,直接绑定

		glDrawArrays(GL_TRIANGLES, 0, 36);  //画三角形,总共有 36 个顶点
		//glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
		glBindVertexArray(0);


		// 画光源
		lightShader.Use();
		// 设置模型、视图和投影矩阵 uniform
		modelLoc = glGetUniformLocation(lightShader.Program, "model");  //到 vs 找到那个 model 变量
		viewLoc = glGetUniformLocation(lightShader.Program, "view");  //到 vs 找到那个 view 变量
		projectionLoc = glGetUniformLocation(lightShader.Program, "projection");  //到 vs 找到那个 projection 变量
		// 对模型进行操作
		model = glm::translate(model, lightPos);  //平移光源
		model = glm::scale(model, glm::vec3(0.2f));  //缩放光源

		// 传入数据
		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
		glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));
		lightColorLoc = glGetUniformLocation(lightShader.Program, "lightColor");
		glUniform3f(lightColorLoc, 1.0f, 1.0f, 1.0f);

		// 绘制光源对象
		glBindVertexArray(lightVAO);  //使用 VAO,直接绑定
		glDrawArrays(GL_TRIANGLES, 0, 36);  //画三角形,总共有 36 个顶点
		//glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
		glBindVertexArray(0);

		glfwSwapBuffers(window);  //调用双面进行画,显示一个,另一个在画,画面更流畅
	}
	glDeleteVertexArrays(1, &VAO);
	glDeleteVertexArrays(1, &lightVAO);
	glDeleteBuffers(1, &VBO);
	//glDeleteBuffers(1, &EBO);

	glfwTerminate();
	return 0;
}


// 键盘操作回应
void KeyCallback(GLFWwindow *window, int key, int scancode, int action, int mode)
{
	if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) {
		glfwSetWindowShouldClose(window, GL_TRUE);  //设定关闭窗口
	}

	if (key >= 0 && key < 1024) {
		if (action == GLFW_PRESS)
		{
			keys[key] = true;  //键盘按下去了,就设置为 true,即为1
		}
		else if (action == GLFW_RELEASE)
		{
			keys[key] = false;  //键盘松开,设为 false
		}
	}
}

// 鼠标操作回应
void MouseCallback(GLFWwindow *window, double xPos, double yPos)
{
	if (firstMouse) {  //只有第一次才初始化
		lastX = xPos;
		lastY = yPos;
		firstMouse = false;
	}
	GLfloat xOffset = xPos - lastX;  //当前位置 - 上一个x
	GLfloat yOffset = lastY - yPos;

	lastX = xPos;
	lastY = yPos;

	camera.ProcessMouseMovement(xOffset, yOffset);
}

// 移动
void DoMovement()
{
	if (keys[GLFW_KEY_W] || keys[GLFW_KEY_UP]) {
		camera.ProcessKeyboard(FORWARD, deltaTime);
	}
	if (keys[GLFW_KEY_S] || keys[GLFW_KEY_DOWN]) {
		camera.ProcessKeyboard(BACKWARD, deltaTime);
	}
	if (keys[GLFW_KEY_A] || keys[GLFW_KEY_LEFT]) {
		camera.ProcessKeyboard(LEFT, deltaTime);
	}
	if (keys[GLFW_KEY_D] || keys[GLFW_KEY_RIGHT]) {
		camera.ProcessKeyboard(RIGHT, deltaTime);
	}
}
  • Shader.h
#pragma once
//#ifndef shader_hpp
//#define shader_hpp
//#endif /* shader_hpp */
#include<string>
#include<fstream> //可以打开文件
#include<sstream>
#include<iostream>
#include<GL/glew.h>

class Shader {
	GLuint vertex, fragment;
public:
	GLuint Program;
	Shader(const GLchar * vertexPath, const GLchar * fragmentPath)
	{
		std::string vertexCode;
		std::string fragmentCode;
		std::ifstream vShaderFile;
		std::ifstream fShaderFile;
		vShaderFile.exceptions(std::ifstream::badbit);
		fShaderFile.exceptions(std::ifstream::badbit);

		try {
			vShaderFile.open(vertexPath);
			fShaderFile.open(fragmentPath);

			std::stringstream vShaderStream, fShaderStream;

			vShaderStream << vShaderFile.rdbuf();
			fShaderStream << fShaderFile.rdbuf();

			//文件关闭顺序,先 v 再 f
			vShaderFile.close();
			fShaderFile.close();

			vertexCode = vShaderStream.str();
			fragmentCode = fShaderStream.str();
		}
		catch (std::ifstream::failure a) {
			std::cout <<
				"ERROR::SHADER::FILE_NOT_SUCCESSFULLY_READ"
				<< std::endl;
		}
		//类型转换
		const GLchar *vShaderCode = vertexCode.c_str();
		const GLchar *fShaderCode = fragmentCode.c_str();

		//import and compile the shader
		vertex = glCreateShader(GL_VERTEX_SHADER);  //不用重新定义
		glShaderSource(vertex, 1, &vShaderCode, NULL);
		glCompileShader(vertex);  //编译

		GLint success;
		GLchar infoLog[512];
		glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);  //编译是否完成的位置
		if (!success) {
			glGetShaderInfoLog(vertex, 512, NULL, infoLog);
			std::cout <<
				"ERROR::SHADER::VERTEX::COMPILATION_FAILED\n"
				<< infoLog << std::endl;
		}

		//边缘调色器
		fragment = glCreateShader(GL_FRAGMENT_SHADER);
		glShaderSource(fragment, 1, &fShaderCode, NULL);
		glCompileShader(fragment);  //编译

		glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);  //编译是否完成的位置
		if (!success) {
			glGetShaderInfoLog(fragment, 512, NULL, infoLog);
			std::cout <<
				"ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n"
				<< infoLog << std::endl;
		}

		//create the program and link the program
		this->Program = glCreateProgram();  //创建着色器程序
		glAttachShader(this->Program, vertex);
		glAttachShader(this->Program, fragment);
		glLinkProgram(this->Program);  //链接

		glValidateProgram(this->Program);  //可省略
		glGetProgramiv(this->Program, GL_LINK_STATUS, &success);
		if (!success) {
			glGetProgramInfoLog(this->Program, 512, NULL, infoLog);  //获取链接情况
			std::cout <<
				"ERROR::SHADER::PROGRAM::LINKING_FAILED\n" <<
				infoLog << std::endl;
		}
	}

	~Shader() {
		glDetachShader(this->Program, vertex);
		glDetachShader(this->Program, fragment);
		glDeleteShader(vertex);
		glDeleteShader(fragment);
		glDeleteProgram(this->Program);
	}
	void Use() {
		glUseProgram(this->Program);
	}
};
  • core1.vs
#version 330 core
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 normal;
//out vec3 Color;
out vec3 Normal;   //法向量
out vec3 FragPos;  //每一个点的位置
//uniform mat4 transform;
uniform mat4 model;  //模型变化,传入参数
uniform mat4 view;  //相机坐标系
uniform mat4 projection;  //投影变换
void main() {
	//gl_Position = transform * vec4(position, 1.0f);
	gl_Position = projection * view * model * vec4(position, 1.0f);  //先乘 model,最后乘 projection
	//Color = color;
	FragPos = vec3(model * vec4(position, 1.0f));
	Normal = mat3(transpose(inverse(model))) * normal;  //平移不影响法向量,所以只要 3 * 3
}
  • core1.frag
#version 330 core
//in vec3 Color;
out vec4 color;
in vec3 FragPos;
in vec3 Normal;

uniform vec3 lightPos;  //光源位置
uniform vec3 viewPos;  //
uniform vec3 objectColor;  //物体颜色
uniform vec3 lightColor;  //光颜色

void main() {
	//color = vec4(Color, 1.0f);

	// ambient 环境部分
	float ambientStrength = 0.1f;
	vec3 ambient = ambientStrength * lightColor;

	// diffuse 漫反射
	vec3 norm = normalize(Normal);
	vec3 lightDir = normalize(lightPos - FragPos);  //光照方向,从光源位置到物***置
	float diff = max(dot(norm, lightDir), 0.0f);  //光照和法向量点乘,与 0 取较大值
	float diffuseStrength = 0.4f;
	//vec3 diffuse = diffuseStrength * diff * lightColor;
	vec3 diffuse = diffuseStrength  * lightColor * diff;

	// specular 镜面反射
	float specularStrength = 2.5f;
	vec3 viewDir = normalize(viewPos - FragPos);
	vec3 halfAngle = normalize(viewDir + lightDir);  //半角
	float spec = pow(max(dot(norm, halfAngle), 0.0f), 32);
	vec3 specular = specularStrength * spec * lightColor;

	// 三部分叠加
	vec3 result = (ambient + diffuse + specular) * objectColor;  //全加一起
	color = vec4(result, 1.0f);
}
  • Camera.h
//
// Camera.h
// Course 3
//
// Created by rui huang on 10/18/17.
// Copyright © 2017 rui huang. All rights reserved.
//

#pragma once

#include <vector>

#define GLEW_STATIC
#include <GL/glew.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

enum Camera_Movement
{
	FORWARD,
	BACKWARD,
	LEFT,
	RIGHT
};

const GLfloat YAW = -90.0f;
const GLfloat PITCH = 0.0f;
const GLfloat SPEED = 6.0f;
const GLfloat SENSITIVITY = 0.25f;
const GLfloat ZOOM = 45.0f;

// An abstract camera class that processes input and calculates the corresponding Eular Angles, Vectors and Matrices for OpenGL
class Camera
{
public:
	// Constructor with vectors
	//设置摄像机位置、上向量、右向量
	Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), GLfloat yaw = YAW, GLfloat pitch = PITCH) :front(glm::vec3(0.0f, 0.0f, -1.0f)), movementSpeed(SPEED), mouseSensitivity(SENSITIVITY), zoom(ZOOM)
	{
		this->position = position;  //相机的起点
		this->worldUp = up;  //向前的量
		this->yaw = yaw;  //仰角:飞机上下动
		this->pitch = pitch;  //飞机左右动
		this->updateCameraVectors();  //更新:建立坐标系
	}
	// Constructor with scalar values
	Camera(GLfloat posX, GLfloat posY, GLfloat posZ, GLfloat upX, GLfloat upY, GLfloat upZ, GLfloat yaw = YAW, GLfloat pitch = PITCH) :front(glm::vec3(0.0f, 0.0f, -1.0f)), movementSpeed(SPEED), mouseSensitivity(SENSITIVITY), zoom(ZOOM)
	{
		this->position = glm::vec3(posX, posY, posZ);
		this->worldUp = glm::vec3(upX, upY, upZ);
		this->yaw = yaw;
		this->pitch = pitch;
		this->updateCameraVectors();
	}

	void ProcessKeyboard(Camera_Movement direction, GLfloat deltaTime)
	{
		//乘以 deltaTime:消除电脑性能,控制时间一样长
		GLfloat velocity = this->movementSpeed * deltaTime;
		//处理键盘
		//向前:加上向前
		if (direction == FORWARD) {
			this->position += this->front * velocity;
		}
		//向后:减去向前
		if (direction == BACKWARD) {
			this->position -= this->front * velocity;
		}

		if (direction == LEFT) {
			this->position -= this->right * velocity;
		}

		if (direction == RIGHT) {
			this->position += this->right * velocity;
		}
	}

	void ProcessMouseMovement(GLfloat xOffset, GLfloat yOffset, GLboolean constrainPith = true)
	{
		xOffset *= this->mouseSensitivity;
		yOffset *= this->mouseSensitivity;

		this->yaw += xOffset;
		this->pitch += yOffset;

		if (constrainPith) {  //保证用户只能看到天空或脚下,但是不能超越这个限制
			//设置界限 < 90.0f,超过 90 度就会失效,视角发生逆转,因为直角是 90 度
			if (this->pitch > 89.0f) {
				this->pitch = 89.0f;
			}
			if (this->pitch < -89.0f) {
				this->pitch = -89.0f;
			}

		}
		this->updateCameraVectors();
	}

	void ProcessMouseScroll(GLfloat yOffset)
	{
	}

	glm::mat4 GetViewMatrix()
	{
		//lookAt:观察矩阵:摄像机位置;目标位置;上向量
		return glm::lookAt(this->position, this->position + this->front, this->up);
	}

	GLfloat GetZoom()
	{
		return this->zoom;
	}

	//返回相机位置
	glm::vec3 GetPosition()
	{
		return this->position;
	}
private:
	glm::vec3 position;
	glm::vec3 front;
	glm::vec3 up;
	glm::vec3 right;
	glm::vec3 worldUp;

	GLfloat yaw;
	GLfloat pitch;

	GLfloat movementSpeed;
	GLfloat mouseSensitivity;
	GLfloat zoom;
	void updateCameraVectors()
	{
		glm::vec3 front;
		//通过俯仰角和偏航角来计算以得到真正的方向向量
		//极坐标系下的:x、y、z轴
		front.x = cos(glm::radians(this->pitch)) * cos(glm::radians(this->yaw));  //x 轴向前
		front.y = sin(glm::radians(this->pitch));  //y 轴向上
		front.z = cos(glm::radians(this->pitch)) * sin(glm::radians(this->yaw)); //z 轴向右
		this->front = glm::normalize(front);  //向前

		this->right = glm::normalize(glm::cross(this->front, this->worldUp));  //向右:向前 × 向上

		this->up = glm::normalize(glm::cross(this->right, this->front));  //向上:向右 × 向前

	}
};
  • light.vs
#version 330 core
layout(location = 0) in vec3 position;
uniform mat4 model;  //模型变化,传入参数
uniform mat4 view;  //相机坐标系
uniform mat4 projection;  //投影变换
void main() {
	gl_Position = projection * view * model * vec4(position, 1.0f);  //先乘 model,最后乘 projection
}
  • light.frag
#version 330 core
uniform vec3 lightColor;  //光颜色
out vec4 color;

void main() {
	color = vec4(lightColor, 1.0f);
}

程序正常运行,能得到已下图形。

二、讲解

设置光源坐标。

// 设置光源坐标
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);

光源调色器。

    // 光源调色器
	Shader lightShader = Shader("light.vs", "light.frag");

为光源创建一个新的 VAO。

    // 为光源创建一个新的 VAO
	GLuint lightVAO;
	glGenVertexArrays(1, &lightVAO);
	// 绑定光源 VAO
	glBindVertexArray(lightVAO);
	// 只需要绑定VBO不用再次设置VBO的数据,因为容器(物体)的VBO数据中已经包含了正确的立方体顶点数据
	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	// 设置光源的顶点属性指针(仅设置灯的顶点数据)
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE,
		6 * sizeof(GLfloat), (GLvoid *)0);  //0:对应调色器里 location 的值;3:对应 vec3 三个量;GL_FLOAT:浮点型;GL_FALSE:;6*sizeof(GLfloat):对应 Buffer 里传的数据;(GLvoid*)0:从第 0 个位置开始
	glEnableVertexAttribArray(0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindVertexArray(0);

设置 uniform。

        // 首先使用对应的着色器程序(来设定uniform)
		GLint objectColorLoc = glGetUniformLocation(ourShader.Program, "objectColor");
		GLint lightColorLoc = glGetUniformLocation(ourShader.Program, "lightColor");
		GLint lightPosLoc = glGetUniformLocation(ourShader.Program, "lightPos");
		GLint viewPosLoc = glGetUniformLocation(ourShader.Program, "viewPos");

设置光源信息。

        glUniform3f(objectColorLoc, 1.0f, 0.5f, 0.3f);  //珊瑚红
		glUniform3f(lightColorLoc, 1.0f, 1.0f, 1.0f);  //把光源设置为白色
		glUniform3f(lightPosLoc, lightPos.x, lightPos.y, lightPos.z);
		glUniform3f(viewPosLoc, camera.GetPosition().x, camera.
			GetPosition().y, camera.GetPosition().z);  //使用摄像机对象的位置坐标代替

画光源。

        // 画光源
		lightShader.Use();
		// 设置模型、视图和投影矩阵 uniform
		modelLoc = glGetUniformLocation(lightShader.Program, "model");  //到 vs 找到那个 model 变量
		viewLoc = glGetUniformLocation(lightShader.Program, "view");  //到 vs 找到那个 view 变量
		projectionLoc = glGetUniformLocation(lightShader.Program, "projection");  //到 vs 找到那个 projection 变量
		// 对模型进行操作
		model = glm::translate(model, lightPos);  //平移光源
		model = glm::scale(model, glm::vec3(0.2f));  //缩放光源

传入数据。

        // 传入数据
		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
		glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));
		lightColorLoc = glGetUniformLocation(lightShader.Program, "lightColor");
		glUniform3f(lightColorLoc, 1.0f, 1.0f, 1.0f);

绘制光源对象。

        // 绘制光源对象
		glBindVertexArray(lightVAO);  //使用 VAO,直接绑定
		glDrawArrays(GL_TRIANGLES, 0, 36);  //画三角形,总共有 36 个顶点
		//glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
		glBindVertexArray(0);

三、致谢

光照

从 0 开始的 OpenGL 学习(十一)- 基本光照模拟