T1和T3不太可做..先只放一下T2
TMD考场上没算好空间直接MLE爆零...
操作1可以归到操作3里,并且几个人的操作可以合并到一块,用线段树挺好维护的。
对于询问的话可以对每一个节点开一个桶,记录区间内前缀数量,向上合并的时候左儿子直接加,右儿子异或后再加。
发现很多节点根本用不到,动态开点即可。
#include<iostream>
#include<cstring>
#include<cstdio>
#define lson (k<<1)
#define rson ((k<<1)|1)
using namespace std;
int n, m, r, q, opt, x, y, v, ans, To, tot;
const int N = 130005;
int sum[N << 2][1 << 6], lz[N << 2];
inline int read()
{
int res = 0; char ch = getchar(); bool XX = false;
for (; !isdigit(ch); ch = getchar())(ch == '-') && (XX = true);
for (; isdigit(ch); ch = getchar())res = (res << 3) + (res << 1) + (ch ^ 48);
return XX ? -res : res;
}
struct ju
{
int c[3][4];
friend ju operator ^(const ju &a, const ju &b)
{
ju c;
memset(c.c, 0, sizeof(c.c));
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
c.c[i][j] = a.c[i][j] ^ b.c[i][j];
return c;
}
} to, tmp, tr[N << 2];
inline void fu(ju &x, int v)
{
memset(x.c, 0, sizeof(x.c));
if (v <= n)
for (int i = 1; i <= m; ++i)x.c[v][i] = 1;
else
{
v -= n;
for (int i = 1; i <= n; ++i)x.c[i][v] = 1;
}
}
inline int to1(ju x)
{
int res = 0;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
res = (res << 1) | x.c[i][j];
return res;
}
inline ju to2(int x)
{
ju res;
memset(res.c, 0, sizeof(res.c));
for (int i = n; i >= 1; --i)
for (int j = m; j >= 1; --j)
res.c[i][j] = (x & 1), x >>= 1;
return res;
}
inline void upd(int k)
{
int tmp;
tr[k] = tr[lson] ^ tr[rson];
for (int i = 0; i < tot; ++i)sum[k][i] = sum[lson][i];
tmp = to1(tr[lson]);
for (int i = 0; i < tot; ++i)sum[k][i ^ tmp] += sum[rson][i];
}
void build(int k, int l, int r)
{
lz[k] = -1;
if (l == r)
{
fu(tr[k], 1); sum[k][to1(tr[k])] = 1;
return;
}
int mid = (l + r) >> 1;
build(lson, l, mid); build(rson, mid + 1, r);
upd(k);
}
inline void work(int k, int l, int r, int v)
{
tr[k] = to2((r - l + 1) & 1 ? v : 0);
lz[k] = v;
for (int i = 0; i < tot; ++i)sum[k][i] = 0;
sum[k][v] = (r - l + 2) >> 1; sum[k][0] = (r - l + 1) - sum[k][v];
}
inline void cd(int k, int l, int r)
{
int mid = (l + r) >> 1;
work(lson, l, mid, lz[k]); work(rson, mid + 1, r, lz[k]);
lz[k] = -1;
}
void change(int k, int l, int r, int x, int y, int v)
{
if (x <= l && r <= y)
{
work(k, l, r, v);
return;
}
if (lz[k] != -1)cd(k, l, r);
int mid = (l + r) >> 1;
if (x <= mid)change(lson, l, mid, x, y, v);
if (mid + 1 <= y)change(rson, mid + 1, r, x, y, v);
upd(k);
}
int ask2(int k, int l, int r, int x, int y, int val)
{
if (x <= l && r <= y)return sum[k][val];
if (lz[k] != -1)cd(k, l, r);
int res = 0, mid = (l + r) >> 1;
if (x <= mid)res += ask2(lson, l, mid, x, y, val);
if (mid + 1 <= y)res += ask2(rson, mid + 1, r, x, y, val ^ to1(tr[lson]));
return res;
}
void solve2()
{
ju tmp;
build(1, 1, r);
while (q--)
{
opt = read();
if (opt == 0)
{
x = read(); y = read();
fu(tmp, y);
change(1, 1, r, x, x, to1(tmp));
}
if (opt == 1)
{
x = read(); y = read();
printf("%d\n", ask2(1, 1, r, x, y, To));
}
if (opt == 2)
{
x = read(); y = read(); v = read();
fu(tmp, v);
change(1, 1, r, x, y, to1(tmp));
}
}
}
int main()
{
cin >> n >> m; tot = (1 << (n * m));
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
to.c[i][j] = read();
To = to1(to);
cin >> r >> q;
solve2();
fclose(stdin); fclose(stdout);
return 0;
}