基本分析

为了方便,我们约定 为点数, 为边数。

根据题意,首先 的数据范围只有 的数据范围为 ,使用「邻接表」或「邻接矩阵」来存图都可以。


存图方式

在开始讲解最短路之前,我们先来学习三种「存图」方式。

邻接矩阵

这是一种使用二维矩阵来进行存图的方式。

适用于边数较多的稠密图使用,当边数量接近点的数量的平方,即 时,可定义为稠密图

// 邻接矩阵数组:w[a][b] = c 代表从 a 到 b 有权重为 c 的边
int[][] w = new int[N][N];

// 加边操作
void add(int a, int b, int c) {
    w[a][b] = c;
}

邻接表

这也是一种在图论中十分常见的存图方式,与数组存储单链表的实现一致(头插法)。

这种存图方式又叫链式前向星存图

适用于边数较少的稀疏图使用,当边数量接近点的数量,即 时,可定义为稀疏图

int[] he = new int[N], e = new int[M], ne = new int[M], w = new int[M];
int idx;

void add(int a, int b, int c) {
    e[idx] = b;
    ne[idx] = he[a];
    he[a] = idx;
    w[idx] = c;
    idx++;
}

首先 idx 是用来对边进行编号的,然后对存图用到的几个数组作简单解释:

  • he 数组:存储是某个节点所对应的边的集合(链表)的头结点;
  • e 数组:由于访问某一条边指向的节点;
  • ne 数组:由于是以链表的形式进行存边,该数组就是用于找到下一条边;
  • w 数组:用于记录某条边的权重为多少。

因此当我们想要遍历所有由 a 点发出的边时,可以使用如下方式:

for (int i = he[a]; i != -1; i = ne[i]) {
    int b = e[i], c = w[i]; // 存在由 a 指向 b 的边,权重为 c
}

这是一种最简单,但是相比上述两种存图方式,使用得较少的存图方式。

只有当我们需要确保某个操作复杂度严格为 时,才会考虑使用。

具体的,我们建立一个类来记录有向边信息:

class Edge {
    // 代表从 a 到 b 有一条权重为 c 的边
    int a, b, c;
    Edge(int _a, int _b, int _c) {
        a = _a; b = _b; c = _c;
    }
}

通常我们会使用 List 存起所有的边对象,并在需要遍历所有边的时候,进行遍历:

List<Edge> es = new ArrayList<>();

...

for (Edge e : es) {
    ...
}

Floyd(邻接矩阵)

根据「基本分析」,我们可以使用复杂度为 的「多源汇最短路」算法 Floyd 算法进行求解,同时使用「邻接矩阵」来进行存图。

跑一遍 Floyd,可以得到「从任意起点出发,到达任意起点的最短距离」。然后取 即是答案。

代码:

import java.util.*;
public class Solution {
    int N = 510, M = 5010;
    // 邻接矩阵数组:w[a][b] = c 代表从 a 到 b 有权重为 c 的边
    int[][] w = new int[N][N];
    int INF = 0x3f3f3f3f;
    int n, k;
    public int findShortestPath (int _n, int _k, int[][] graph) {
         n = _n; k = _k;
        // 初始化邻接矩阵
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                w[i][j] = w[j][i] = i == j ? 0 : INF;
            }
        }
        // 存图
        for (int[] t : graph) {
            int u = t[0], v = t[1], c = t[2];
            w[u][v] = Math.min(w[u][v], c);
        }
        // 最短路
        floyd();
        return w[1][n] >= INF / 2 ? -1 : w[1][n];
    }
    void floyd() {
        // floyd 基本流程为三层循环:
        // 枚举中转点 - 枚举起点 - 枚举终点 - 松弛操作        
        for (int p = 1; p <= n; p++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    w[i][j] = Math.min(w[i][j], w[i][p] + w[p][j]);
                }
            }
        }
    }
}
  • 时间复杂度:
  • 空间复杂度:

朴素 Dijkstra(邻接矩阵)

同理,我们可以使用复杂度为 的「单源最短路」算法朴素 Dijkstra 算法进行求解,同时使用「邻接矩阵」来进行存图。

根据题意, 点作为源点,跑一遍 Dijkstra 我们可以得到从源点 到其他点 的最短距离 ,取 即是答案。

朴素 Dijkstra 复杂度为 ,可以过。

代码:

import java.util.*;
public class Solution {
    int N = 510, M = 5010;
    // 邻接矩阵数组:w[a][b] = c 代表从 a 到 b 有权重为 c 的边
    int[][] w = new int[N][N];
    // dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
    int[] dist = new int[N];
    // 记录哪些点已经被更新过
    boolean[] vis = new boolean[N];
    int INF = 0x3f3f3f3f;
    int n, k;
    public int findShortestPath (int _n, int _k, int[][] graph) {
          n = _n; k = _k;
        // 初始化邻接矩阵
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                w[i][j] = w[j][i] = i == j ? 0 : INF;
            }
        }
        // 存图
        for (int[] t : graph) {
            int u = t[0], v = t[1], c = t[2];
            w[u][v] = Math.min(w[u][v], c);
        }
        // 最短路
        dijkstra();
        return dist[n] >= INF / 2 ? -1 : dist[n];
    }
    void dijkstra() {
        // 起始先将所有的点标记为「未更新」和「距离为正无穷」
        Arrays.fill(vis, false);
        Arrays.fill(dist, INF);
        // 只有起点最短距离为 0
        dist[1] = 0;
        // 迭代 n 次
        for (int p = 1; p <= n; p++) {
            // 每次找到「最短距离最小」且「未被更新」的点 t
            int t = -1;
            for (int i = 1; i <= n; i++) {
                if (!vis[i] && (t == -1 || dist[i] < dist[t])) t = i;
            }
            // 标记点 t 为已更新
            vis[t] = true;
            // 用点 t 的「最小距离」更新其他点
            for (int i = 1; i <= n; i++) {
                dist[i] = Math.min(dist[i], dist[t] + w[t][i]);
            }
        }
    }
}
  • 时间复杂度:
  • 空间复杂度:

堆优化 Dijkstra(邻接表)

由于边数据范围不算大,我们还可以使用复杂度为 的堆优化 Dijkstra 算法进行求解。

堆优化 Dijkstra 算法与朴素 Dijkstra 都是「单源最短路」算法。

此时算法复杂度为 ,可以过。

代码:

import java.util.*;
public class Solution {
    int N = 510, M = 5010;
    // 邻接表
    int[] he = new int[N], e = new int[M], ne = new int[M], w = new int[M];
    // dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
    int[] dist = new int[N];
    // 记录哪些点已经被更新过
    boolean[] vis = new boolean[N];
    int n, k, idx;
    int INF = 0x3f3f3f3f;
    void add(int a, int b, int c) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx;
        w[idx] = c;
        idx++;
    }
    public int findShortestPath (int _n, int _k, int[][] graph) {
        n = _n; k = _k;
        // 初始化链表头
        Arrays.fill(he, -1);
        // 存图
        for (int[] t : graph) {
            int u = t[0], v = t[1], c = t[2];
            add(u, v, c);
        }
        // 最短路
        dijkstra();
        return dist[n] >= INF / 2 ? -1 : dist[n];
    }
    void dijkstra() {
        // 起始先将所有的点标记为「未更新」和「距离为正无穷」
        Arrays.fill(vis, false);
        Arrays.fill(dist, INF);
        // 只有起点最短距离为 0
        dist[1] = 0;
        // 使用「优先队列」存储所有可用于更新的点
        // 以 (点编号, 到起点的距离) 进行存储,优先弹出「最短距离」较小的点
        PriorityQueue<int[]> q = new PriorityQueue<>((a,b)->a[1]-b[1]);
        q.add(new int[]{1, 0});
        while (!q.isEmpty()) {
            // 每次从「优先队列」中弹出
            int[] poll = q.poll();
            int id = poll[0], step = poll[1];
            // 如果弹出的点被标记「已更新」,则跳过
            if (vis[id]) continue;
            // 标记该点「已更新」,并使用该点更新其他点的「最短距离」
            vis[id] = true;
            for (int i = he[id]; i != -1; i = ne[i]) {
                int j = e[i];
                if (dist[j] > dist[id] + w[i]) {
                    dist[j] = dist[id] + w[i];
                    q.add(new int[]{j, dist[j]});
                }
            }
        }
    }
}
  • 时间复杂度:
  • 空间复杂度:

Bellman Ford(类 & 邻接表)

虽然题目规定了不存在「负权边」,但我们仍然可以使用可以在「负权图中求最短路」的 Bellman Ford 进行求解,该算法也是「单源最短路」算法,复杂度为

通常为了确保 ,可以单独建一个类代表边,将所有边存入集合中,在 次松弛操作中直接对边集合进行遍历(代码见 )。

由于本题边的数量级大于点的数量级,因此也能够继续使用「邻接表」的方式进行边的遍历,遍历所有边的复杂度的下界为 ,上界可以确保不超过 (代码见 )。

代码:

import java.util.*;
public class Solution {
    class Edge {
        int a, b, c;
        Edge(int _a, int _b, int _c) {
            a = _a; b = _b; c = _c;
        }
    }
    int N = 510, M = 5010;
    // dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
    int[] dist = new int[N];
    int INF = 0x3f3f3f3f;
    int n, m, k;
    // 使用类进行存边
    List<Edge> es = new ArrayList<>();
    public int findShortestPath (int _n, int _k, int[][] graph) {
        n = _n; k = _k;
        m = graph.length;
        // 存图
        for (int[] t : graph) {
            int u = t[0], v = t[1], c = t[2];
            es.add(new Edge(u, v, c));
        }
        // 最短路
        bf();
        return dist[n] >= INF / 2 ? -1 : dist[n];
    }
    void bf() {
        // 起始先将所有的点标记为「距离为正无穷」
        Arrays.fill(dist, INF);
        // 只有起点最短距离为 0
        dist[1] = 0;
        // 迭代 n 次
        for (int p = 1; p <= n; p++) {
            int[] prev = dist.clone();
            // 每次都使用上一次迭代的结果,执行松弛操作
            for (Edge e : es) {
                int a = e.a, b = e.b, c = e.c;
                dist[b] = Math.min(dist[b], prev[a] + c);
            }
        }
    }
}
import java.util.*;
public class Solution {
    int N = 510, M = 5010;
    // 邻接表
    int[] he = new int[N], e = new int[M], ne = new int[M], w = new int[M];
    // dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
    int[] dist = new int[N];
    int INF = 0x3f3f3f3f;
    int n, m, k, idx;
    void add(int a, int b, int c) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx;
        w[idx] = c;
        idx++;
    }
    public int findShortestPath (int _n, int _k, int[][] graph) {
        n = _n; k = _k;
        m = graph.length;
        // 初始化链表头
        Arrays.fill(he, -1);
        // 存图
        for (int[] t : graph) {
            int u = t[0], v = t[1], c = t[2];
            add(u, v, c);
        }
        // 最短路
        bf();
        return dist[n] >= INF / 2 ? -1 : dist[n];
    }
    void bf() {
        // 起始先将所有的点标记为「距离为正无穷」
        Arrays.fill(dist, INF);
        // 只有起点最短距离为 0
        dist[1] = 0;
        // 迭代 n 次
        for (int p = 1; p <= n; p++) {
            int[] prev = dist.clone();
            // 每次都使用上一次迭代的结果,执行松弛操作
            for (int a = 1; a <= n; a++) {
                for (int i = he[a]; i != -1; i = ne[i]) {
                    int b = e[i];
                    dist[b] = Math.min(dist[b], prev[a] + w[i]);
                }
            }
        }
    }
}
  • 时间复杂度:
  • 空间复杂度:

SPFA(邻接表)

SPFA 是对 Bellman Ford 的优化实现,可以使用队列进行优化,也可以使用栈进行优化。

通常情况下复杂度为 一般为 ,最坏情况下仍为 ,当数据为网格图时,复杂度会从 退化为

代码:

import java.util.*;
public class Solution {
    int N = 510, M = 5010;
    // 邻接表
    int[] he = new int[N], e = new int[M], ne = new int[M], w = new int[M];
    // dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
    int[] dist = new int[N];
    // 记录哪一个点「已在队列」中
    boolean[] vis = new boolean[N];
    int INF = 0x3f3f3f3f;
    int n, k, idx;
    void add(int a, int b, int c) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx;
        w[idx] = c;
        idx++;
    }
    public int findShortestPath (int _n, int _k, int[][] graph) {
        n = _n; k = _k;
        // 初始化链表头
        Arrays.fill(he, -1);
        // 存图
        for (int[] t : graph) {
            int u = t[0], v = t[1], c = t[2];
            add(u, v, c);
        }
        // 最短路
        spfa();
        return dist[n] >= INF / 2 ? -1 : dist[n];
    }
    void spfa() {
        // 起始先将所有的点标记为「未入队」和「距离为正无穷」
        Arrays.fill(vis, false);
        Arrays.fill(dist, INF);
        // 只有起点最短距离为 0
        dist[1] = 0;
        // 使用「双端队列」存储,存储的是点编号
        Deque<Integer> d = new ArrayDeque<>();
        // 将「源点/起点」进行入队,并标记「已入队」
        d.addLast(1);
        vis[1] = true;
        while (!d.isEmpty()) {
            // 每次从「双端队列」中取出,并标记「未入队」
            int poll = d.pollFirst();
            vis[poll] = false;
            // 尝试使用该点,更新其他点的最短距离
            // 如果更新的点,本身「未入队」则加入队列中,并标记「已入队」
            for (int i = he[poll]; i != -1; i = ne[i]) {
                int j = e[i];
                if (dist[j] > dist[poll] + w[i]) {
                    dist[j] = dist[poll] + w[i];
                    if (vis[j]) continue;
                    d.addLast(j);
                    vis[j] = true;
                }
            }
        }
    }
}
  • 时间复杂度:
  • 空间复杂度:

最后

这是我们「必考真题 の 精选」系列文章的第 No.158 篇,系列开始于 2021/07/01。

该系列会将牛客网中「题霸 - 面试必考真题」中比较经典而又不过时的题目都讲一遍。

在提供追求「证明」&「思路」的同时,提供最为简洁的代码。

欢迎关注,交个朋友 (`・ω・´)