线性回归

学习目标

  • 掌握线性回归的实现过程
  • 应用LinearRegression或SGDRegressor实现回归预测
  • 知道回归算法的评估标准及其公式
  • 知道过拟合与欠拟合的原因以及解决方法
  • 知道岭回归的原理及与线性回归的不同之处
  • 应用Ridge实现回归预测
  • 应用joblib实现模型的保存与加载

2.10 线性回归的改进-岭回归

1 API

  • sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver=“auto”, normalize=False)
    • 具有l2正则化的线性回归
    • alpha:正则化力度,也叫 λ
      • λ取值:0~1 1~10
    • solver:会根据数据自动选择优化方法
      • sag:如果数据集、特征都比较大,选择该随机梯度下降优化
    • normalize:数据是否进行标准化
      • normalize=False:可以在fit之前调用preprocessing.StandardScaler标准化数据
    • Ridge.coef_:回归权重
    • Ridge.intercept_:回归偏置

Ridge方法相当于SGDRegressor(penalty=‘l2’, loss=“squared_loss”),只不过SGDRegressor实现了一个普通的随机梯度下降学习,推荐使用Ridge(实现了SAG)

  • sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)
    • 具有l2正则化的线性回归,可以进行交叉验证
    • coef_:回归系数
class _BaseRidgeCV(LinearModel):
    def __init__(self, alphas=(0.1, 1.0, 10.0),
                 fit_intercept=True, normalize=False,scoring=None,
                 cv=None, gcv_mode=None,
                 store_cv_values=False):

2 观察正则化程度的变化,对结果的影响?

  • 正则化力度越大,权重系数会越小
  • 正则化力度越小,权重系数会越大

3 波士顿房价预测

def linear_model3():
    """ 线性回归:岭回归 :return: """
    # 1.获取数据
    data = load_boston()

    # 2.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)

    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)

    # 4.机器学习-线性回归(岭回归)
    estimator = Ridge(alpha=1)
    # estimator = RidgeCV(alphas=(0.1, 1, 10))
    estimator.fit(x_train, y_train)

    # 5.模型评估
    # 5.1 获取系数等值
    y_predict = estimator.predict(x_test)
    print("预测值为:\n", y_predict)
    print("模型中的系数为:\n", estimator.coef_)
    print("模型中的偏置为:\n", estimator.intercept_)

    # 5.2 评价
    # 均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:\n", error)