A
设三个数分别为
发现三个数在模 意义下构成了整个剩余系
所以只有当 为质数时有答案,也就是满足题目要求的数对只有
#include<bits/stdc++.h> using namespace std; template < typename Tp > inline void read(Tp &x) { x = 0; int fh = 1; char ch = 1; while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar(); if(ch == '-') fh = -1, ch = getchar(); while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= fh; } template < typename Tp > inline void biread(Tp &x) { x = 0; int fh = 1; char ch = 1; while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar(); if(ch == '-') fh = -1, ch = getchar(); while(ch >= '0' && ch <= '9') x = x * 2 + ch - '0', ch = getchar(); x *= fh; } long long n; inline void Init(void) { cin >> n; } inline void Work(void) { if(n < 7) { puts("0"); } else { printf("1\n3 5 7\n"); } } signed main(void) { Init(); Work(); return 0; }
C
, 的质因数中 不会超过 个,上述命题很容易证明。
考虑 ,其中,
因此,对 LCM 有贡献的数,一定为 ,只有在质数的若干次方,才会使对应的 变大。
问题转化为求 内,有多少个数可以表示成 的形式。
百度搜索 n 以内素数个数 1e11 会收获惊喜。
然后暴力就行了。
#include<cstdio> #include<cmath> #include<iostream> using namespace std; #define LL long long const int N = 5e6 + 2; bool np[N]; int prime[N], pi[N]; int cnt; int getprime() { cnt = 0; np[0] = np[1] = true; pi[0] = pi[1] = 0; for(int i = 2; i < N; ++i) { if(!np[i]) prime[++cnt] = i; pi[i] = cnt; for(int j = 1; j <= cnt && i * prime[j] < N; ++j) { np[i * prime[j]] = true; if(i % prime[j] == 0) break; } } return cnt; } const int M = 7; const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17; int phi[PM + 1][M + 1], sz[M + 1]; void init() { getprime(); sz[0] = 1; for(int i = 0; i <= PM; ++i) phi[i][0] = i; for(int i = 1; i <= M; ++i) { sz[i] = prime[i] * sz[i - 1]; for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1]; } } int sqrt2(LL x) { LL r = (LL)sqrt(x - 0.1); while(r * r <= x) ++r; return int(r - 1); } int sqrt3(LL x) { LL r = (LL)cbrt(x - 0.1); while(r * r * r <= x) ++r; return int(r - 1); } LL getphi(LL x, int s) { if(s == 0) return x; if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s]; if(x <= prime[s]*prime[s]) return pi[x] - s + 1; if(x <= prime[s]*prime[s]*prime[s] && x < N) { int s2x = pi[sqrt2(x)]; LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2; for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]]; return ans; } return getphi(x, s - 1) - getphi(x / prime[s], s - 1); } LL getpi(LL x) { if(x < N) return pi[x]; LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1; for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1; return ans; } LL lehmer_pi(LL x) { if(x < N) return pi[x]; int a = (int)lehmer_pi(sqrt2(sqrt2(x))); int b = (int)lehmer_pi(sqrt2(x)); int c = (int)lehmer_pi(sqrt3(x)); LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2; for (int i = a + 1; i <= b; i++) { LL w = x / prime[i]; sum -= lehmer_pi(w); if (i > c) continue; LL lim = lehmer_pi(sqrt2(w)); for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1); } return sum; } LL ans; int main() { init(); LL n; cin>>n; ans+=lehmer_pi(n); for(int i=1;i<=cnt;++i){ LL x=prime[i]; for(LL tmp=x;tmp<=n;tmp*=x)if(tmp!=x)++ans; } cout<<ans<<endl; return 0; }
E
2019年上海市高三数学竞赛第12题原题,百度即可。
其中, 是指
#include<bits/stdc++.h> using namespace std; template < typename Tp > inline void read(Tp &x) { x = 0; int fh = 1; char ch = 1; while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar(); if(ch == '-') fh = -1, ch = getchar(); while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= fh; } template < typename Tp > inline void biread(Tp &x) { x = 0; int fh = 1; char ch = 1; while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar(); if(ch == '-') fh = -1, ch = getchar(); while(ch >= '0' && ch <= '9') x = x * 2 + ch - '0', ch = getchar(); x *= fh; } int n; inline void Init(void) { read(n); } #define maxn 1005 int a[maxn][maxn]; inline void Work(void) { --n; int ans=n*n+2*n-1; ans>>=1; ++n; cout<<ans<<endl; if(n%2==0){ int tot=n*n+1; for(int i=1;i<=n;++i)a[i][1]=--tot; for(int i=(n>>1);i;--i){ int t1=(i<<1),t2=t1-1; for(int j=2;j<=n;++j)a[t1][j]=--tot; for(int j=n;j>=2;--j)a[t2][j]=--tot; } } else{ int tot=n*n+1; for(int i=1;i<=n;++i)a[i][1]=--tot; for(int i=n;i>3;i-=2){ int t1=i,t2=i-1; for(int j=2;j<=n;++j)a[t1][j]=--tot; for(int j=n;j>=2;--j)a[t2][j]=--tot; } for(int j=2;j<=n;++j)a[3][j]=--tot; for(int j=n;j>1;j-=2){ a[2][j]=--tot; a[1][j]=--tot; a[1][j-1]=--tot; a[2][j-1]=--tot; } } for(int i=1;i<=n;++i){ for(int j=1;j<=n;++j){ printf("%d%c",a[i][j]," \n"[j==n]); } } } signed main(void) { Init(); Work(); return 0; }