[模板]杭电多校第一场

据说标题加模板浏览量++

1002 Operation[贪心+线性基]

题目强制在线

一来我就写了一个线段树MLE,仔细一想1.2e8必然MLE

这题求的是\((l,r)\)上的任意数的最大异或和

我们来回忆一下线性基求最大异或和的操作:

将线性基从高位向低位扫,若 xor 上当前扫到的\(pos[j]\)答案变大,就把答案异或上 \(pos[j]​\)

因为从高到低,可以改变当前的第\(j\)位,而以后就没有机会了.改变高的必然比改变低的优.

而本题只需要记录插入最大且最右边改变第\(j\)位的下标.如果这个下标比\(l\)大,那么可以更新\(ans\)

#include <bits/stdc++.h>

using namespace std;

const int maxn = 500000 + 7;
int pos[maxn][32];//每个(1,r)基底
int las[maxn][32];//每个1最右边的位置

void add(int val, int id) {
    int k = id;
    for (int j = 30; j >= 0; --j) {
        pos[id][j] = pos[id - 1][j];
        las[id][j] = las[id - 1][j];
    }
    for (int j = 30; j >= 0; --j) {
        if (val >> j) {
            if (pos[id][j] == 0) {
                pos[id][j] = val;
                las[id][j] = k;
                break;
            }
            if (k > las[id][j]) {
                swap(las[id][j], k);
                swap(val, pos[id][j]);
            }
            val ^= pos[id][j];
        }
    }
}

int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        int n, m, op, u, v;
        int l, r;
        scanf("%d%d", &n, &m);
        for (int i = 1, x; i <= n; ++i) {
            scanf("%d", &x);
            add(x, i);
        }
        int las_ans = 0;
        while (m--) {
            scanf("%d", &op);
            if (op == 1) {
                scanf("%d", &u);
                u ^= las_ans;
                n++;
                add(u, n);
            } else {
                scanf("%d%d", &u, &v);
                l = (u ^ las_ans) % n + 1;
                r = (v ^ las_ans) % n + 1;
                if (l > r) swap(l, r);
                las_ans = 0;
                for (int j = 30; j >= 0; --j)
                    if ((las_ans ^ pos[r][j]) > las_ans && las[r][j] >= l)
                        las_ans ^= pos[r][j];
                printf("%d\n", las_ans);
            }
        }
    }
    return 0;
}

1004 Vacation[思维]

只看始末状态.

假设车开到不影响杰瑞到达终点的地方就停止.

取一个时间的最大值就是答案.理由:

前面的车比后面快,那影响答案的就是后面的到达时间;如果前面的车比后面慢,那么影响答案的就是前面的车的到达时间,因为他们会接在一起,然后同一时间出发和停止.

#include<bits/stdc++.h>
 
typedef long long ll;
using namespace std;
 
ll n;
ll l[100002], s[100002], v[100002];
 
int main() {
    while (scanf("%lld", &n) != EOF) {
        for (ll i = 0; i <= n; ++i) {
            scanf("%lld", &l[i]);
        }
        for (ll i = 0; i <= n; ++i) {
            scanf("%lld", &s[i]);
        }
        for (ll i = 0; i <= n; ++i) {
            scanf("%lld", &v[i]);
        }
 
        double ans = s[0] * 1.0 / (v[0] * 1.0);
        ll tot = 0;
        for (ll i = 1; i <= n; ++i) {
            tot += l[i];
            ans = max(ans, ((tot + s[i]) * 1.0) / (v[i] * 1.0));
        }
        printf("%.10f\n", ans);
    }
    return 0;
}

1005 Path[最短路+网络流]

求出所有的最短路径

然后复习一下最小割:https://www.cnblogs.com/smallocean/p/9509817.html

小心爆int

#include <bits/stdc++.h>

using namespace std;
#define ll long long

template<class T>
inline void read(T &res) {
    res = 0;
    T f = 1;
    char c;
    c = getchar();
    while (c < '0' || c > '9') {
        if (c == '-') f = -1;
        c = getchar();
    }
    while (c >= '0' && c <= '9') {
        res = res * 10 + c - '0';
        c = getchar();
    }
    res *= f;
}

const int maxn = 1e4 + 7;
const int maxm = 2e4 + 7;
const ll inf = 0x3f3f3f3f3f3f3f3f;

struct Dinic {
    struct Edge {
        int next, to;
        ll f;
    } e[maxm];
    int head[maxn];
    ll dep[maxn], tol;
    ll ans;
    int cur[maxn];
    int src, sink, n;

    void add(int u, int v, int f) {
        tol++;
        e[tol].to = v;
        e[tol].next = head[u];
        e[tol].f = f;
        head[u] = tol;
        tol++;
        e[tol].to = u;
        e[tol].next = head[v];
        e[tol].f = 0;
        head[v] = tol;
    }

    bool bfs() {
        queue<int> q;
        for (register int i = 0; i <= n; ++i) dep[i] = -1;
        q.push(src);
        dep[src] = 0;
        while (!q.empty()) {
            int now = q.front();
            q.pop();
            for (register int i = head[now]; i; i = e[i].next) {
                if (dep[e[i].to] == -1 && e[i].f) {
                    dep[e[i].to] = dep[now] + 1;
                    if (e[i].to == sink)
                        return true;
                    q.push(e[i].to);
                }
            }
        }
        return false;
    }

    ll dfs(int x, ll maxx) {
        if (x == sink)
            return maxx;
        for (int &i = cur[x]; i; i = e[i].next) {
            if (dep[e[i].to] == dep[x] + 1 && e[i].f > 0) {
                ll flow = dfs(e[i].to, min(maxx, e[i].f));
                if (flow) {
                    e[i].f -= flow;
                    e[i ^ 1].f += flow;
                    return flow;
                }
            }
        }
        return 0;
    }

    ll dinic(int s, int t) {
        ans = 0;
        this->src = s;
        this->sink = t;
        while (bfs()) {
            for (register int i = 0; i <= n; ++i)
                cur[i] = head[i];
            while (ll d = dfs(src, inf))
                ans += d;
        }
        return ans;
    }

    void init(int n) {
        this->n = n;
        for (int i = 0; i <= n; ++i)head[i] = 0;
        tol = 1;
    }
} G;

struct Dijk {
    ll dist[maxn];
    bool vis[maxn];

    struct qnode {
        int v;
        ll c;

        qnode(int _v = 0, ll _c = 0) : v(_v), c(_c) {}

        bool operator<(const qnode &r) const {
            return c > r.c;
        }
    };

    struct edge {
        int v;
        ll cost;

        edge(int _v = 0, ll _cost = 0) : v(_v), cost(_cost) {}
    };

    vector<edge> E[maxn];

    void add(int u, int v, int w) {
        E[u].emplace_back(edge(v, w));
    }

    void Dijkstra(int n, int start) {
        memset(vis, false, sizeof(vis));
        for (int i = 1; i <= n; ++i)dist[i] = inf;
        priority_queue<qnode> que;
        dist[start] = 0;
        que.push(qnode(start, 0));
        qnode tmp;
        while (!que.empty()) {
            tmp = que.top();
            que.pop();
            int u = tmp.v;
            if (vis[u])continue;
            vis[u] = true;
            for (int i = 0; i < E[u].size(); ++i) {
                int v = E[tmp.v][i].v;
                ll cost = E[u][i].cost;
                if (!vis[v] && dist[v] > dist[u] + cost) {
                    dist[v] = dist[u] + cost;
                    que.push(qnode(v, dist[v]));
                }
            }
        }
    }

    void init(int n) {
        for (int i = 0; i <= n; ++i) {
            E[i].clear();
        }
    }
} a;

struct node {
    int u, v;
    ll w;
} s[maxn];

int main() {
    int T;
    read(T);
    int n, m;
    int x, y, z;
    while (T--) {
        read(n);
        read(m);
        a.init(n);
        for (register int i = 0; i < m; ++i) {
            read(x);
            read(y);
            read(z);
            a.add(x, y, z);
            s[i].u = x, s[i].v = y, s[i].w = z;
        }
        a.Dijkstra(n, 1);
        G.init(n + 10);
        for (register int i = 0; i < m; ++i) {
            if (a.dist[s[i].v] - s[i].w == a.dist[s[i].u]) {
                G.add(s[i].u, s[i].v, s[i].w);
            }
        }
        printf("%lld\n", G.dinic(1, n));
    }
    return 0;
}

1009 String[暴力+模拟+合法性判断]

预处理出后缀和

判断某个字符加进来是否合法

非法不加

合法根据上下限以及后缀有多少个字符来判断

#include <bits/stdc++.h>

using namespace std;

template<class T>
inline void read(T &res) {
    res = 0;
    T f = 1;
    char c;
    c = getchar();
    while (c < '0' || c > '9') {
        if (c == '-') f = -1;
        c = getchar();
    }
    while (c >= '0' && c <= '9') {
        res = res * 10 + c - '0';
        c = getchar();
    }
    res *= f;
}

template<class T>
inline void out(T x) {
    if (x < 0) {
        putchar('-');
        x = -x;
    }
    if (x >= 10) {
        out(x / 10);
    }
    putchar('0' + x % 10);
}

const int maxn = 1e5 + 7;
char str[maxn], ans[maxn];

int l[27], r[27];
int sum[maxn][27];
int used[27];
int now;
queue<int> pos[27];
int n, m;

bool check(int id,int p) {
    while (!pos[id].empty() && pos[id].front() < now) pos[id].pop();
    if (pos[id].empty()) return 0;
    int k = pos[id].front();
    int cnt = 0;
    for (int i = 0; i < 26; ++i) {
        if (l[i] > used[i]) {
            if (sum[k+1][i] < l[i]-used[i]) return 0;
            cnt += l[i] - used[i];
        }
    }
    if (cnt > m-p) return 0;
    now = k;
    pos[id].pop();
    return 1;
}

int main() {
    while (scanf("%s%d", str, &m) != EOF) {
        n = strlen(str);
        for (int i = 0; i < 26; ++i) {
            used[i] = 0, sum[n][i] = 0, read(l[i]), read(r[i]);
            while (!pos[i].empty())pos[i].pop();
        }
        for (int i = 0; i < n; ++i) pos[str[i] - 'a'].push(i);
        for (int i = n - 1; i >= 0; --i) {
            for (int j = 0; j < 26; ++j) sum[i][j] = sum[i + 1][j];
            sum[i][str[i] - 'a']++;
        }
        bool flag = 1;
        now = -1;
        for (int i = 1, j; i <= m; ++i) {
            for (j = 0; j < 26; ++j) {
                if (r[j] - used[j] == 0) continue;
                used[j]++;
                if (check(j,i)) {
                    ans[i] = 'a' + j;
                    break;
                }
                used[j]--;
            }
            if (j == 26) {
                flag = 0;
                break;
            }
        }
        if (flag) {
            ans[m + 1] = '\0';
            printf("%s\n", ans + 1);
        } else {
            puts("-1");
        }
    }
    return 0;
}