题目描述
You are given N non-negative integers A1,A2,...,AN and another non-negative integer K.
For a integer X between 0 and K (inclusive), let f(X)=(X XOR A1) + (X XOR A2) + ... + (X XOR AN).
Here, for non-negative integers a and b, a XOR b denotes the bitwise exclusive OR of a and b.
Find the maximum value of f.
What is XOR?
The bitwise exclusive OR of a and b, X, is defined as follows:
When X is written in base two, the digit in the 2k's place (k≥0) is 1 if, when written in base two, exactly one of A and B has 1 in the 2k's place, and 0 otherwise.
For example, 3 XOR 5=6. (When written in base two: 011 XOR 101=110.)
Constraints
·All values in input are integers.
·\(1≤N≤10^5\)
·\(0≤K≤10^{12}\)
·\(0≤A_i≤10^{12}\)
输入
Input is given from Standard Input in the following format:
N K
A1 A2 ... AN
输出
Print the maximum value of f.
样例输入
3 7
1 6 3
样例输出
14
提示
The maximum value is: f(4)=(4 XOR 1)+(4 XOR 6)+(4 XOR 3)=5+2+7=14.
题解
首先想到按位考虑
一开始我采用贪心构造x,每一位如果0多那么应该选1,如果1多就选0
为了符合题意中比k小,用一个flag记录是否已经比k小了
- 如果k的这位为1,如果我选0的话,那x必然已经比k小了
- 如果k的这位为0,只有当flag=1即x已经比k小了,才可以选1
下面是WA贪心代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e5+7;
ll s[maxn],sum[63];
ll K[63];
void getS(ll num){
int i=0;
while(num){
if(num & 1) sum[i]++;
++i;
num >>= 1;
}
}
int main() {
int n;
ll k;
scanf("%d%lld",&n,&k);
for(int i=1;i<=n;++i){
scanf("%lld",&s[i]);
getS(s[i]);
}
int p=0;
while(k){
if(k & 1) K[p]++;
++p;
k >>= 1;
}
p-=1;
bool flag = 0;
for(int i=p;i>=0;--i){
if(sum[i] < n - sum[i]){
if(K[i] == 1||flag == 1) sum[i] = 1;
else sum[i]=0;
}else{
if(K[i] == 1) flag = 1;
sum[i] = 0;
}
}
ll res = 0;
for(int i=0;i<=p;++i){
if(sum[i]){
res = res + (1ll << i);
}
}
ll ans=0;
for(int i=1;i<=n;++i){
ans= ans + (res^s[i]);
}
printf("%lld\n",ans);
return 0;
}
这个可以被下面这个样例卡:
5 8
8 0 0 0 8
问题出在:每一位如果0多那么应该选1,如果1多就选0
这种情况只能保证在这一位上是最优解,不能保证整体最优
所以应该把这个贪心改成不会遗漏状态的动态规划
dp[i][j][z]:i代表第i位,j代表这位选0还是1,z代表x是否已经比k小了;dp代表价值
- 我是直接从k的最高位开始遍历的,所以要先特判k为0的情况,高于最高位的直接选0
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e5+7;
ll s[maxn],sum[65];
int mx;
ll K[65];
ll dp[65][2][2];
void getS(ll num){
int i=0;
while(num){
if(num & 1) sum[i]++;
++i;
num >>= 1;
}
mx = max(mx,i-1);
}
int main() {
int n;
ll k;
scanf("%d%lld",&n,&k);
for(int i=1;i<=n;++i){
scanf("%lld",&s[i]);
getS(s[i]);
}
int p=0;
while(k){
if(k & 1) K[p]++;
++p;
k >>= 1;
}
if(p==0){
ll ans=0;
for(int i=1;i<=n;++i){
ans += s[i];
}
printf("%lld\n",ans);
return 0;
}
p-=1;
mx = max(p,mx);
dp[p][1][0] = (n*1ll-sum[p])*(1ll << p);
dp[p][0][1] = sum[p]*(1ll << p);
for(ll i=p - 1;i>=0;--i){
ll b = (n*1ll-sum[i])*(1ll << i);//1
ll a = sum[i]*(1ll << i);//0
if(K[i] == 1){
dp[i][1][0] = max(dp[i+1][0][0],dp[i+1][1][0]) + b;
dp[i][1][1] = max(dp[i+1][0][1],dp[i+1][1][1]) + b;
dp[i][0][1] = max(max(dp[i+1][0][0],dp[i+1][0][1]),max(dp[i+1][1][1],dp[i+1][1][0])) + a;
}else if(K[i] == 0){
dp[i][0][0] = max(dp[i+1][0][0],dp[i+1][1][0])+ a;
dp[i][1][1] = max(dp[i+1][0][1],dp[i+1][1][1]) + b;
dp[i][0][1] = max(dp[i+1][1][1],dp[i+1][0][1])+ a;
}
}
ll ans = max(max(dp[0][1][0],dp[0][1][1]),max(dp[0][0][1],dp[0][0][0]));
for(ll i=mx;i>p;--i){
ans += sum[i]*(1ll<<i);
}
printf("%lld\n",ans);
return 0;
}