题目大意:从1~n把这n个数分成两个集合,和为s1,s2,是否可以让这两个集合的gcd大于1(即不互质)

思路:稍加思考得知,只要不是1,2一定可以分成功,我是按照头尾相加的方式分的,类似等差数列的求和??

中间的一个或两个分一块,剩下的分一块,分一下奇偶就好啦

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
#include<queue>
#include<string>
#include<vector>
#include<map>
const int inf = 0x3f3f3f3f;
using namespace std;
const int N = 1e5+9;
const int mod = 1e9+7;
#define ll long long
int n,k;
int vis[29];
int main()
{
	//freopen("in.txt","r",stdin);
	scanf("%d",&n);
	if(n==1||n==2)
	{
		cout<<"No"<<endl;
		return 0;
	}
	cout<<"Yes"<<endl;
	if(n&1)
	{	cout<<"1"<<" ";
		cout<<(n+1)/2<<endl;
		cout<<n-1;
		for(int i = 1; i<=n; i++)
		{
			if(i==(n+1)/2) continue;
			cout<<" "<<i;
		}
		cout<<endl;
	}
	else{
		cout<<2;
		cout<<" "<<n/2<<" "<<n/2+1<<endl;
		cout<<n-2;
		for(int i = 1; i<=n; i++)
		{
			if(i==n/2||i==(n/2+1)) continue;
			cout<<" "<<i;
		}
		cout<<endl;
	}
	return 0;
}