问题描述
题解
模拟退火模板
记住概率公式: \(exp(\frac{dealt}{T}) \times rand \ge R_A^ND^M_AX\)
zzk太欧了,我交了一版没过他来了一下就A了。
\(\mathrm{Code}\)
#include<bits/stdc++.h>
using namespace std;
template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
}
int n;
int x[1007],y[1007],w[1007];
int sx,sy;
double ansx,ansy,ans=1e18,T;
double delta=0.993;
double eps=0.00000000001;
double calc(double xxx,double yyy){
double res=0.0;
for(int i=1;i<=n;i++){
double xx=xxx-x[i],yy=yyy-y[i];
res=res+sqrt(xx*xx+yy*yy)*w[i];
}
return res;
}
double SA(){
double nx=ansx,ny=ansy;
T=2000;
while(T>eps){
double mx=nx+((rand()*2-RAND_MAX))*T,my=ny+(rand()*2-RAND_MAX)*T;
double na=calc(mx,my);double del=na-ans;
if(del<0){
ansx=nx=mx,ansy=ny=my;
ans=na;
}
else{
if(exp(-del/T)*RAND_MAX>rand()) nx=mx,ny=my;
}
T*=delta;
}
}
int ss,sss;
int main(){
srand(192**817);
read(n);
for(int i=1;i<=n;i++){
read(x[i]);read(y[i]);read(w[i]);
ss+=x[i],sss+=y[i];
}
ansx=(double)ss/n;ansy=(double)sss/n;
SA();SA();SA();SA();//SA();//SA();SA();SA();SA();SA();SA();
// SA();SA();SA();SA();SA();SA();SA();SA();SA();SA();SA();
printf("%.3f %.3f\n",ansx,ansy);
return 0;
}