2019牛客多校第一场

A:Equivalent Prefixes(单调栈)

  • 题意:注意是每个子区间都要满足
  • 可以发现必须要有单调性,想到要同增同减
  • 然后找到一个满足同增同减,但是不符合题意的反例:
    • 1 3 2
    • 1 3 0
  • 然后发现必须要维护一个以当前点结尾的最长上升子序列长度相同
  • 如果不同就break
  • 就想到单调栈 不过我不会严格证明,比赛的时候找不到反例
#include <bits/stdc++.h>

#define ll long long
using namespace std;
const ll mod = 1e9 + 7;
const int N = 1e5 + 10;
int a[N], b[N];
int q1[N], q2[N];

int main() {
    int n;
    while (scanf("%d", &n) != EOF) {
        for (int i = 1; i <= n; i++)scanf("%d", &a[i]);
        for (int i = 1; i <= n; i++)scanf("%d", &b[i]);
        int l1 = 0, r1 = 0, l2 = 0, r2 = 0;
        int ans = 1;
        for (int i = 1; i <= n; i++) {
            while (l1 <= r1 && q1[r1] > a[i]) {
                r1--;
            }
            q1[++r1] = a[i];
            while (l2 <= r2 && q2[r2] > b[i]) {
                r2--;
            }
            q2[++r2] = b[i];
            if ((r1 - l1) == (r2 - l2))ans = i;
            else break;
        }
        printf("%d\n", ans);
    }
    return 0;
}

B: Integration(数学)

  • 题意:求那个积分
  • 裂项
    • 把乘换成减,两项两项地换
    • 复杂度\(O(n^2)\)
    • 积分的可加性
    • \(pre\)记录系数,最后再乘以积分的值\(\pi/{2a}\)
  • 代码
#include <bits/stdc++.h>
 
#define ll long long
using namespace std;
const int mod = 1e9 + 7;
ll s[1010];
ll pre[1010];
 
ll qpow(ll a, ll n) {
    ll res = 1;
    a %= mod;
    while (n) {
        if (n & 1) res = res * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return res;
}
 
int main() {
    int n;
    while (scanf("%d", &n) != EOF) {
        for (int i = 1; i <= n; ++i) scanf("%lld", &s[i]), pre[i] = 0;
        pre[1] = 1;
        for (int i = 2; i <= n; ++i) {
            for (int j = 1; j < i; ++j) {
                pre[j] = (pre[j] * qpow(((s[i] * s[i] % mod - s[j] * s[j] % mod)%mod + mod) % mod,mod-2)+mod)% mod;
                pre[i] = ((pre[i] - pre[j]) % mod + mod) % mod;
            }
        }
        ll ans = 0;
        for (int i = 1; i <= n; ++i) {
            ans = ((ans + pre[i] * qpow(s[i] * 2LL, mod - 2) % mod+mod)%mod+mod) % mod;
        }
        printf("%lld\n", ans);
    }
    return 0;
}

C:Euclidean Distance(数学+贪心)

#include <bits/stdc++.h>

#define ll long long
using namespace std;
const int mod = 1e9 + 7;
const int maxn = 1e4 + 10;
ll s[maxn];
ll pre[maxn];

int main() {
    int n, m;
    while (scanf("%d%d", &n, &m) != EOF) {
        for (int i = 1; i <= n; ++i) {
            scanf("%lld", &s[i]);
        }
        sort(s + 1, s + 1 + n);
        reverse(s + 1, s + 1 + n);
        pre[0] = -m;
        for (int i = 1; i <= n; ++i) {
            pre[i] = pre[i - 1] + s[i];
        }
        ll pos = n;
        for (ll i = 0; i < n; ++i) {
            if (pre[i] > s[i + 1] * i) {
                pos = i;
                break;
            }
        }
        ll ansa = pre[pos] * pre[pos] * pos;
        ll ansb = pos * pos;
        for (ll i = pos + 1; i <= n; ++i) {
            ansa += s[i] * s[i] * ansb;
        }
        ansb *= (m * m);
        ll g = __gcd(ansa, ansb);
        ansa /= g;
        ansb /= g;
        if (ansb == 1) {
            printf("%lld\n", ansa);
        } else {
            printf("%lld/%lld\n", ansa, ansb);
        }
    }
    return 0;
}

E:ABBA(贪心+DP)

  • 题意:就是有\(n\)个"AB",\(m\)个"BA",问能结合成多少个序列.这个要求是AB和BA的顺序不变,即A和B的相对位置不变.我们要讨论一下什么才是合法的状态.

  • 贪心:

    • 假设只有\(n​\)个AB,合法情况是每个B前面要有\(1 ...n​\)个A
    • 假设除了有AB,还有\(m\)个BA,那每个B前面可以有超过\(n\)个A,但是第一个B前面还是要有\(1...n\)个A.否则就会使BA类型的某个B后面没A.
    • B与后面的A可以构成BA,相当于抵消了一个A,那下一个B前面就只需要有\(1...n​\)未被抵消的A.
    • 所以A-B小于等于\(n\)是合法的.当A-B等于\(n\),意味着最后一个只能是A,因为如果最后一个是B,那B前面就有\(n+1\)个未被抵消的A.
    • A前面有多少个B也是同理.
  • DP

    • \(dp[i][j]\)\(i\)代表A的个数,\(j\)代表B的个数.\(dp\)值代表合法方案.

    • 初始化,按照上述前缀的限定

    • \(dp[i][0]=dp[0][j]=1\)

    • 不考虑那么多,可以简单得出

      \[dp[i][j]=dp[i-1][j]+dp[i][j-1] \]
    • 但是要排除非法的情况

      • \(0\leq j-i\leq m\)\(0\leq i-j \leq n\) 是合法情况
      • 注意\(=m\)\(=n\)\(=0\)的情况
  • 代码

  #include <bits/stdc++.h>
  
  #define ll long long
  using namespace std;
  const ll mod = 1e9 + 7;
  const ll N = 1e5 + 10;
  ll dp[2010][2010];
  
  int main() {
      ll n, m;
      while (scanf("%lld%lld", &n, &m) != EOF) {
          ll cnt = (n + m);
          for (int i = 0; i <= cnt; i++)
              for (int j = 0; j <= cnt; j++)
                  dp[i][j] = 0;
          for (ll i = 0; i <= cnt; i++) {
              dp[i][0] = dp[0][i] = 1;
          }
          for (ll i = 1; i <= cnt; i++) {
              for (ll j = 1; j <= cnt; j++) {
                  if (i == j) {
                      if (n)
                          dp[i][j] = (dp[i][j] + dp[i][j - 1]) % mod;
                      if (m)
                          dp[i][j] = (dp[i][j] + dp[i - 1][j]) % mod;
                  } else if (j > i) {
                      if (j - i < m)
                          dp[i][j] = ((dp[i][j] + dp[i - 1][j]) % mod + dp[i][j - 1]) % mod;
                      else if (j - i == m)
                          dp[i][j] = (dp[i][j] + dp[i][j - 1]) % mod;
                  } else if (i > j) {
                      if (i - j < n)
                          dp[i][j] = ((dp[i][j] + dp[i - 1][j]) % mod + dp[i][j - 1]) % mod;
                      if (i - j == n)
                          dp[i][j] = (dp[i][j] + dp[i - 1][j]) % mod;
                  }
                  //cout<<i<<" "<<j<<" "<<dp[i][j]<<endl;
              }
          }
          printf("%lld\n", dp[cnt][cnt] % mod);
      }
  
      return 0;
  

F:Random Point in Triangle(期望+随机+叉积)

参考了一下大牛的博客

https://www.cnblogs.com/WAautomaton/p/11211864.html

首先我们得出当一个点P随机落在三角形内部,新三角形BPC的高的期望为\(H/3\)
证明如下:(字丑勿怪)

得到了这个,那就好办了,就变成了简单几何问题.
剩下的可以看大佬的博客,我就不赘述了.

#include <bits/stdc++.h>

#define ll long long
using namespace std;
const ll mod = 1e9 + 7;
const ll N = 1e5 + 10;

int main() {
    ll x1, y1, x2, y2, x3, y3;
    while (~scanf("%lld%lld%lld%lld%lld%lld", &x1, &y1, &x2, &y2, &x3, &y3)) {
        ll ans = 11;
        ll cnt = abs(x1 * y2 + x2 * y3 + x3 * y1 - x1 * y3 - x2 * y1 - x3 * y2);
        ans = ans * cnt;
        printf("%lld\n", ans);
    }
    return 0;
}

Fraction Comparision(大数+JAVA)

居然不会JAVA的多组输入,JAVA白考98了…..

一开始用了nextline 一直RE.

import java.math.*;
import java.util.*;
public class Main {
    static BigInteger ans,m;
    static BigInteger[] arr;
    static int n;
    public static void main(String []args){
  
      Scanner cin = new Scanner(System.in);
      //Long x,a,y,b;
      BigInteger x,a,y,b;
      while(cin.hasNextBigInteger()){
          x=cin.nextBigInteger();
          a=cin.nextBigInteger();
          y=cin.nextBigInteger();
          b=cin.nextBigInteger();
          int s=b.multiply(x).compareTo(a.multiply(y));
          if(s>0){
              System.out.println(">");
          }else if(s==0){
              System.out.println("=");
          }else{
              System.out.println("<");
          }
      }
    }
  
}