Description
牛妹现在正在1号点(自己家里),他决定前往n号点(牛妹想去的地方),中途可以多次经过1~n号点。
现在,已知每个点都有个权值 ,如果 & ≠0,则i号点和j号点之间连有一条双向边,权值为。他想要最小化自己的行走距离,但是他计算不出来qaq。相信全牛客最聪明的你一定会吧!
Solution
朴素做法是暴力连所有边,但是边集规模过大,考虑二进制优化,对32个二进制位建立32个虚点,对于每个,如果该二进制位j为1,那么连边权值为 1 << j。(注意虚点到该点的距离为0)
最后跑一个Dijkstra即可,注意 ,不能开 int
Code
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1e5 + 105; ll a[N]; bool vis[N]; ll dist[N]; struct Edge { int v; ll cost; Edge(int _v = 0, ll _cost = 0): v(_v), cost(_cost){} }; vector<Edge> G[N]; struct qnode { int v; ll cost; bool operator < (const qnode &s) const { return cost > s.cost; } qnode(int _v = 0, ll _cost = 0): v(_v), cost(_cost){} }; void Dijkstra() { priority_queue<qnode> q; q.push(qnode(1, 0)); dist[1] = 0; while(!q.empty()) { qnode now = q.top(); q.pop(); int u = now.v; if(vis[u]) continue; vis[u] = true; for(int i = 0; i < G[u].size(); i++) { int v = G[u][i].v; ll cost = G[u][i].cost; if(!vis[v] && dist[v] > dist[u] + cost) { dist[v] = dist[u] + cost; q.push({v, dist[v]}); } } } } int main() { ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); int T; cin >> T; while(T--) { int n; cin >> n; for(int i = 1; i <= n; i++) cin >> a[i], G[i].clear(), dist[i] = 1e18, vis[i] = false; for(int i = n + 1; i <= n + 50; i++) { G[i].clear(), dist[i] = 1e18, vis[i] = false; } for(int i = 1; i <= n; i++) { for(int j = 0; j < 32; j++) { if(a[i] & (1LL << j)) { G[i].push_back({n + 1 + j, 1LL << j}); G[n + 1 + j].push_back({i, 0}); } } } Dijkstra(); if(dist[n] == 1e18) cout << "Impossible\n"; else cout << dist[n] << "\n"; } return 0; }