题目链接:牛客13611 树

Description

给定一颗有 个节点的树,有 种颜料给树染色。
一个染色方案是合法的,当且仅当对于所有相同颜色的点对 ,满足的路径上所有点的颜色相同(包括)。
统计方案数,答案对取模。
数据范围

Solution

这是一道结论题
如果直接做,显然不好做,我们考虑切换视角。
在树上求点对路径,其实可以通过序转换到链上
我们先跑一次,记下每个点的
我们会发现,如果当前遍历到了点 ,那么 的祖先们肯定都已经遍历过了,它的兄弟们有部分被遍历过。
我们规定的排列顺序是按照排列的,那么我们枚举的时候,已经上色了。
如果想要遍历到,那么无论如何都要经过它的父亲,所以一定与同色。
因此,我们发现,这个树的形态我们并不关心,真正重要的只是
好,接下来,我们定义表示按照排列,前个节点染了种颜色的方案数。
考虑如何转移:

  • 个节点染这种颜色中的一种,那么方案数为 ,因为它的颜色一定与它父亲颜色相同;
  • 个节点染新的一种颜色,那么方案数为 ,因为还剩余 种颜色供 选择。

显然边界条件是
答案即为
时间复杂度 ,可以通过本题。
PS:为啥这题的数据范围这么小啊……

Code

// Author: wlzhouzhuan
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define ull unsigned long long
#define rint register int
#define rep(i, l, r) for (rint i = l; i <= r; i++)
#define per(i, l, r) for (rint i = l; i >= r; i--)
#define mset(s, _) memset(s, _, sizeof(s))
#define pb push_back
#define pii pair <int, int>
#define mp(a, b) make_pair(a, b)
#define Each(i) for (rint i = head[u]; i; i = edge[i].nxt)

inline int read() {
  int x = 0, neg = 1; char op = getchar();
  while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); }
  while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); }
  return neg * x;
}
inline void print(int x) {
  if (x < 0) { putchar('-'); x = -x; }
  if (x >= 10) print(x / 10);
  putchar(x % 10 + '0');
}

const int mod = 1e9 + 7;
const int N = 301;
int f[N][N];
int n, k;

int main() {
  n = read(), k = read();
  f[0][0] = 1;
  for (rint i = 1; i <= n; i++) {
    for (rint j = 1; j <= k; j++) {
      f[i][j] = (f[i - 1][j] + 1ll * f[i - 1][j - 1] * (k - j + 1) % mod) % mod;
    }
  }
  int ans = 0;
  for (rint i = 1; i <= k; i++) {
    ans = (ans + f[n][i]) % mod;
  }
  printf("%d\n", ans); 
  return 0;
}