2.3 会话、张量、变量OP

学习目标

  • 目标
    • 应用sess.run或者eval运行图程序并获取张量值
    • 应用feed_dict机制实现运行时填充数据
    • 应用placeholder实现创建占位符
    • 知道常见的TensorFlow创建张量
    • 知道常见的张量数***算操作
    • 说明numpy的数组和张量相同性
    • 说明张量的两种形状改变特点
    • 应用set_shape和tf.reshape实现张量形状的修改
    • 应用tf.matmul实现张量的矩阵运算修改
    • 应用tf.cast实现张量的类型
    • 说明变量op的特殊作用
    • 说明变量op的trainable参数的作用
    • 应用global_variables_initializer实现变量op的初始化
  • 应用
  • 内容预览

2.3.1 会话

一个运行TensorFlow operation的类。会话包含以下两种开启方式

  • tf.Session:用于完整的程序当中
  • tf.InteractiveSession:用于交互式上下文中的TensorFlow ,例如shell

1 TensorFlow 使用 tf.Session 类来表示客户端程序(通常为 Python 程序,但也提供了使用其他语言的类似接口)与 C++ 运行时之间的连接

2 tf.Session 对象使用分布式 TensorFlow 运行时提供对本地计算机中的设备和远程设备的访问权限。

2.3.1.1 init(target=’’, graph=None, config=None)参数

with tf.Session() as session:里面有的一些参数

会话可能拥有的资源,如 tf.Variable,tf.QueueBase和tf.ReaderBase。当这些资源不再需要时,释放这些资源非常重要。因此,需要调用tf.Session.close会话中的方法,或将会话用作上下文管理器。以下两个例子作用是一样的:

  • 用with as的话会默认调用close语句
def session_demo():
    """ 会话演示 :return: """

    a_t = tf.constant(10)
    b_t = tf.constant(20)
    # 不提倡直接运用这种符号运算符进行计算
    # 更常用tensorflow提供的函数进行计算
    # c_t = a_t + b_t
    c_t = tf.add(a_t, b_t)
    print("tensorflow实现加法运算:\n", c_t)

    # 开启会话
    # 传统的会话定义
    # sess = tf.Session()
    # sum_t = sess.run(c_t)
    # print("sum_t:\n", sum_t)
    # sess.close()

    # 开启会话
    with tf.Session() as sess:
        # sum_t = sess.run(c_t)
        # 想同时执行多个tensor
        print(sess.run([a_t, b_t, c_t]))
        # 方便获取张量值的方法
        # print("在sess当中的sum_t:\n", c_t.eval())
        # 会话的图属性
        print("会话的图属性:\n", sess.graph)

    return None
  • target:如果将此参数留空(默认设置),会话将仅使用本地计算机中的设备。可以指定 grpc:// 网址,以便指定 TensorFlow 服务器的地址,这使得会话可以访问该服务器控制的计算机上的所有设备。
  • graph:默认情况下,新的 tf.Session 将绑定到当前的默认图。
  • config:此参数允许您指定一个 tf.ConfigProto 以便控制会话的行为。例如,ConfigProto协议用于打印设备使用信息
# 运行会话并打印设备信息
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=True))

会话可以分配不同的资源在不同的设备上运行。

/job:worker/replica:0/task:0/device:CPU:0

device_type:类型设备(例如CPU,GPU,TPU)

<mark>下面是所有的三个节点操作用的设备</mark>
<mark>可以指定节点预算的设备不一样</mark>

2.3.1.2 会话的run()及其参数

  • run(fetches,feed_dict=None, options=None, run_metadata=None)
    • 通过使用sess.run()来运行operation
    • fetches:单一的operation,或者列表、元组(其它不属于tensorflow的类型不行)
    • feed_dict:参数允许调用者覆盖图中张量的值,运行时赋值
      • 与tf.placeholder搭配使用,则会检查值的形状是否与占位符兼容。
        <mark>打印多个值用列表</mark>

使用tf.operation.eval()也可运行operation,但需要在会话中运行

# 创建图
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b

# 创建会话
sess = tf.Session()

# 计算C的值
print(sess.run(c))
print(c.eval(session=sess))

import tensorflow as tf
a = tf.constant(23)
b = tf.constant(34)
c=a+b
# 1.不用上下文,eval的括号里面要指定初始化的sess
# sess = tf.Session()
# print(c.eval(session=sess))
# 2.使用上下文
with tf.Session() as sess:
    print(c.eval())

2.3.1.3 feed操作

  • placeholder提供占位符,run时候通过feed_dict指定参数
def session_run_demo():
    """ 会话的run方法 :return: """
    # 定义占位符
    a = tf.placeholder(tf.float32)
    b = tf.placeholder(tf.float32)
    sum_ab = tf.add(a, b)
    print("sum_ab:\n", sum_ab)
    # 开启会话
    with tf.Session() as sess:
        print("占位符的结果:\n", sess.run(sum_ab, feed_dict={
   a: 3.0, b: 4.0}))
    return None

<mark>占位符的使用</mark>

请注意运行时候报的错误error:

RuntimeError:如果这Session是无效状态(例如已关闭)。
TypeError:如果fetches或者feed_dict键的类型不合适。
ValueError:如果fetches或feed_dict键无效或引用 Tensor不存在的键。

在编写 TensorFlow 程序时,程序传递和运算的主要目标是tf.Tensor

2.3.2 张量(Tensor)

TensorFlow 的张量就是一个 n 维数组, 类型为tf.Tensor。Tensor具有以下两个重要的属性

  • type:数据类型
  • shape:形状(阶)

2.3.2.1 张量的类型

2.3.2.2 张量的阶


形状有0阶、1阶、2阶….

tensor1 = tf.constant(4.0)
tensor2 = tf.constant([1, 2, 3, 4])
linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)

print(tensor1.shape)
# 0维:() 1维:(10, ) 2维:(3, 4) 3维:(3, 4, 5)

2.3.3 创建张量的指令

  • 固定值张量

  • 随机值张量

  • 其它特殊的创建张量的op
    • tf.Variable
    • tf.placeholder

2.3.4 张量的变换

2.3.4.1 类型改变

2.3.4.2 形状改变

TensorFlow的张量具有两种形状变换,动态形状和静态形状

  • tf.reshape
  • tf.set_shape

关于动态形状和静态形状必须符合以下规则

  • 静态形状
    • 转换静态形状的时候,1-D到1-D,2-D到2-D,不能跨阶数改变形状
    • 对于已经固定的张量的静态形状的张量,不能再次设置静态形状
  • 动态形状
    • tf.reshape()动态创建新张量时,张量的元素个数必须匹配
def tensor_demo():
    """ 张量的介绍 :return: """
    a = tf.constant(value=30.0, dtype=tf.float32, name="a")
    b = tf.constant([[1, 2], [3, 4]], dtype=tf.int32, name="b")
    a2 = tf.constant(value=30.0, dtype=tf.float32, name="a2")
    c = tf.placeholder(dtype=tf.float32, shape=[2, 3, 4], name="c")
    sum = tf.add(a, a2, name="my_add")
    print(a, a2, b, c)
    print(sum)
    # 获取张量属性
    print("a的图属性:\n", a.graph)
    print("b的名字:\n", b.name)
    print("a2的形状:\n", a2.shape)
    print("c的数据类型:\n", c.dtype)
    print("sum的op:\n", sum.op)

    # 获取静态形状
    print("b的静态形状:\n", b.get_shape())

    # 定义占位符
    a_p = tf.placeholder(dtype=tf.float32, shape=[None, None])
    b_p = tf.placeholder(dtype=tf.float32, shape=[None, 10])
    c_p = tf.placeholder(dtype=tf.float32, shape=[3, 2])
    # 获取静态形状
    print("a_p的静态形状为:\n", a_p.get_shape())
    print("b_p的静态形状为:\n", b_p.get_shape())
    print("c_p的静态形状为:\n", c_p.get_shape())

    # 形状更新
    # a_p.set_shape([2, 3])
    # 静态形状已经固定部分就不能修改了
    # b_p.set_shape([10, 3])
    # c_p.set_shape([2, 3])

    # 静态形状已经固定的部分包括它的阶数,如果阶数固定了,就不能跨阶更新形状
    # 如果想要跨阶改变形状,就要用动态形状
    # a_p.set_shape([1, 2, 3])
    # 获取静态形状
    print("a_p的静态形状为:\n", a_p.get_shape())
    print("b_p的静态形状为:\n", b_p.get_shape())
    print("c_p的静态形状为:\n", c_p.get_shape())

    # 动态形状
    # c_p_r = tf.reshape(c_p, [1, 2, 3])
    c_p_r = tf.reshape(c_p, [2, 3])
    # 动态形状,改变的时候,不能改变元素的总个数
    # c_p_r2 = tf.reshape(c_p, [3, 1])
    print("动态形状的结果:\n", c_p_r)
    # print("动态形状的结果2:\n", c_p_r2)
    return None

2.3.5 张量的数***算

  • 算术运算符
  • 基本数学函数
  • 矩阵运算
  • reduce操作
  • 序列索引操作

详细请参考: https://www.tensorflow.org/versions/r1.8/api_guides/python/math_ops

这些API使用,我们在使用的时候介绍,具体参考文档

2.3.6 变量

TensorFlow变量是表示程序处理的共享持久状态的最佳方法。变量通过 tf.Variable OP类进行操作。变量的特点:

  • 存储持久化
  • 可修改值
  • 可指定被训练

2.3.6.1 创建变量

  • tf.Variable(

    initial_value=None,trainable=True,collections=None

    ,name=None)

    • initial_value:初始化的值
    • trainable:是否被训练
    • collections:新变量将添加到列出的图的集合中collections,默认为[GraphKeys.GLOBAL_VARIABLES],如果trainable是True变量也被添加到图形集合 GraphKeys.TRAINABLE_VARIABLES
  • 变量需要显式初始化,才能运行值

def variable_demo():
    """ 变量的演示 :return: """
    # 定义变量
    a = tf.Variable(initial_value=30)
    b = tf.Variable(initial_value=40)
    sum = tf.add(a, b)

    # 初始化变量
    init = tf.global_variables_initializer()

    # 开启会话
    with tf.Session() as sess:
        # 变量初始化
        sess.run(init)
        print("sum:\n", sess.run(sum))

    return None

2.3.6.2 使用tf.variable_scope()修改变量的命名空间

会在OP的名字前面增加命名空间的指定名字

with tf.variable_scope("name"):
    var = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)
    var_double = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)

<tf.Variable 'name/var:0' shape=() dtype=float32_ref>
<tf.Variable 'name/var_1:0' shape=() dtype=float32_ref>