链接:https://codeforces.com/contest/1285/problem/D
Today, as a friendship gift, Bakry gave Badawy nn integers a1,a2,…,ana1,a2,…,an and challenged him to choose an integer XX such that the value max1≤i≤n(ai⊕X)max1≤i≤n(ai⊕X) is minimum possible, where ⊕⊕ denotes the bitwise XOR operation.
As always, Badawy is too lazy, so you decided to help him and find the minimum possible value of max1≤i≤n(ai⊕X)max1≤i≤n(ai⊕X).
Input
The first line contains integer nn (1≤n≤1051≤n≤105).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤230−10≤ai≤230−1).
Output
Print one integer — the minimum possible value of max1≤i≤n(ai⊕X)max1≤i≤n(ai⊕X).
Examples
input
Copy
3 1 2 3
output
Copy
2
input
Copy
2 1 5
output
Copy
4
Note
In the first sample, we can choose X=3X=3.
In the second sample, we can choose X=5X=5.
代码:
#include <bits/stdc++.h>
using namespace std;
long long n;
long long a[100010];
long long dfs(long long p, long long q, long long h)
{
if(h==-1)
return 0;
long long l=p,r=q,t=p-1;
while(l<=r)
{
long long mid=(l+r)/2;
if((a[mid]&((1<<h+1)-1))<(1<<h))
l=(t=mid)+1;
else
r=mid-1;
}
if(t==p-1||t==q)
{
return dfs(p,q,h-1);
}
return min(dfs(p,t,h-1),dfs(t+1,q,h-1))+(1<<h);
}
int main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
}
sort(a+1,a+n+1);
printf("%lld\n",dfs(1,n,30));
}