前言
正文
参考题解
#include<iostream>
using namespace std;
/* 题意: 有理数的四则运算,其实就是分数的四则运算,和A1081的和 思路: 首先挂出三个函数模板,一是求最大公约数,二是化简函数reduction, 三是输出函数showRes(一般输出形式是 整数部分+真分数部分) */
//分数用结构体表示
typedef long long LL;
struct Fraction{
LL up,down;
};
//求最大公约数
LL gcd(LL a,LL b){
return b==0?a:gcd(b,a%b);
}
//化简函数
Fraction reduction(Fraction res){
if(res.down<0){
res.down=-res.down;
res.up=-res.up;
}
if(res.up==0){
res.down=1;
}else{
LL factor=gcd(abs(res.up),res.down);
res.up/=factor;
res.down/=factor;
}
return res;
}
//结果函数
void showRes(Fraction res){
res=reduction(res);
if(res.up<0){//负数需要加括号
cout<<"(";
}
if(res.down==1){//整数
printf("%lld",res.up);
}else if(abs(res.up)>res.down){//假分数
printf("%lld %lld/%lld",res.up/res.down,abs(res.up)%res.down,res.down);
}else {//真分数
printf("%lld/%lld",res.up,res.down);
}
if(res.up<0){//负数需要加括号
cout<<")";
}
}
//加法
Fraction add(Fraction a,Fraction b){
Fraction res;
res.up=a.up*b.down+a.down*b.up;
res.down=a.down*b.down;
return reduction(res);
}
//减法
Fraction diff(Fraction a,Fraction b){
Fraction res;
res.up=a.up*b.down-a.down*b.up;
res.down=a.down*b.down;
return reduction(res);
}
//乘法
Fraction sub(Fraction a,Fraction b){
Fraction res;
res.up=a.up*b.up;
res.down=a.down*b.down;
return reduction(res);
}
//除法
Fraction div(Fraction a,Fraction b){
Fraction res;
res.up=a.up*b.down;
res.down=a.down*b.up;
return reduction(res);
}
int main(){
Fraction a,b;
scanf("%lld/%lld %lld/%lld",&a.up,&a.down,&b.up,&b.down);
showRes(a);cout<<" + ";showRes(b);cout<<" = ";showRes(add(a,b));cout<<endl;
showRes(a);cout<<" - ";showRes(b);cout<<" = ";showRes(diff(a,b));cout<<endl;
showRes(a);cout<<" * ";showRes(b);cout<<" = ";showRes(sub(a,b));cout<<endl;
showRes(a);cout<<" / ";showRes(b);cout<<" = ";
if(b.up!=0){//除数不为0
showRes(div(a,b));
}else cout<<"Inf";
cout<<endl;
return 0;
}