自定义Dense层(Custom Dense Layer)是一种常用的神经网络层,其计算公式为:
其中,是权重矩阵,
是输入,
是偏置,
是激活函数。
本质是全连接层,通过矩阵乘法和偏置实现线性变换,再通过激活函数实现非线性变换。
标准代码如下
class Dense(Layer):
def __init__(self, n_units, input_shape=None):
self.layer_input = None
self.input_shape = input_shape
self.n_units = n_units
self.trainable = True
self.W = None
self.w0 = None
def initialize(self, optimizer):
limit = 1 / math.sqrt(self.input_shape[0])
self.W = np.random.uniform(-limit, limit, (self.input_shape[0], self.n_units))
self.w0 = np.zeros((1, self.n_units))
self.W_opt = copy.copy(optimizer)
self.w0_opt = copy.copy(optimizer)
def parameters(self):
return np.prod(self.W.shape) + np.prod(self.w0.shape)
def forward_pass(self, X, training=True):
self.layer_input = X
return X.dot(self.W) + self.w0
def backward_pass(self, accum_grad):
W = self.W
if self.trainable:
grad_w = self.layer_input.T.dot(accum_grad)
grad_w0 = np.sum(accum_grad, axis=0, keepdims=True)
self.W = self.W_opt.update(self.W, grad_w)
self.w0 = self.w0_opt.update(self.w0, grad_w0)
accum_grad = accum_grad.dot(W.T)
return accum_grad
def output_shape(self):
return (self.n_units, )