题目描述
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入: [ [1,3,1], [1,5,1], [4,2,1] ] 输出: 7 解释: 因为路径 1→3→1→1→1 的总和最小。
暴力递归思路
1.我们可以将每个位置向右和向下的结果都求出来,然后每次都选择最小的加起来即可。
Java代码实现
public int minPathSum(int[][] grid) { return minPathSum(grid,0,0); } private int minPathSum(int[][] grid,int i,int j,int[][] memory) { if(i == grid.length) return Integer.MAX_VALUE-grid[i-1][j]; if(j == grid[0].length) return Integer.MAX_VALUE-grid[i][j-1]; if(i == grid.length-1 && j == grid[0].length-1) return grid[i][j]; int path1 = grid[i][j]+minPathSum(grid,i+1,j,memory); int path2 = grid[i][j]+minPathSum(grid,i,j+1,memory); int curPath = Math.min(path1,path2); return curPath; }
备忘录方法
1.我们可以发现暴力***将同一个位置的答案计算多次,所以我们可以将计算过的答案存储起来,如果发现该位置的答案已经算好了,就不用再递归求结果了,可以大幅度减少递归的次数。
Java代码实现
public int minPathSum(int[][] grid) { int[][] memory = new int[grid.length][grid[0].length]; return minPathSum(grid,0,0,memory); } private int minPathSum(int[][] grid,int i,int j,int[][] memory) { if(i == grid.length) return Integer.MAX_VALUE-grid[i-1][j]; if(j == grid[0].length) return Integer.MAX_VALUE-grid[i][j-1]; if(i == grid.length-1 && j == grid[0].length-1) return grid[i][j]; if(memory[i][j] != 0) return memory[i][j]; int path1 = grid[i][j]+minPathSum(grid,i+1,j,memory); int path2 = grid[i][j]+minPathSum(grid,i,j+1,memory); int curPath = Math.min(path1,path2); memory[i][j] = curPath; return curPath; }
动态规划
1.我们可以通过以上两种方法可以总结出状态转移方程为:dp(i,j)=grid(i,j)+min(dp(i+1,j),dp(i,j+1))
2.我们设置一个二维数组存储dp的结果,然后将dp[0][0]作为结果返回即可。
Java代码实现
public int minPathSum(int[][] grid) { int[][] res = new int[grid.length+1][grid[0].length+1]; for (int i = grid.length-1; i >= 0 ; i--) { for (int j = grid[0].length - 1; j >= 0; j--) { if (i == grid.length - 1 && j == grid[0].length - 1) { res[i][j] = grid[i][j]; continue; } //如果是最后一行 if (i == grid.length - 1) { res[i][j] = grid[i][j] + res[i][j + 1]; continue; } //如果是最后一列 if (j == grid[0].length - 1) { res[i][j] = grid[i][j] + res[i + 1][j]; continue; } res[i][j] = Math.min(grid[i][j] + res[i][j + 1], grid[i][j] + res[i + 1][j]); } } return res[0][0]; }
Golang代码实现
func minPathSum(grid [][]int) int { n := len(grid) if n == 0{ return 0 } m := len(grid[0]) for i:=n-2; i>=0; i--{ grid[i][m-1] = grid[i][m-1] + grid[i+1][m-1] } for i:= m-2; i>=0; i--{ grid[n-1][i] = grid[n-1][i] + grid[n-1][i+1] } for i:=n-2;i>=0;i--{ for j:=m-2; j>=0;j--{ if grid[i+1][j] > grid[i][j+1]{ grid[i][j] = grid[i][j] +grid[i][j+1] } else{ grid[i][j] = grid[i][j] + grid[i+1][j] } } } return grid[0][0] }