描述
题解
dij+dfs,先通过dij预处理一遍求终点的单源最短路,然后再记忆化dfs,最终获取有多少条路可供选择。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
/* * 单源最短路径,Dijkstra算法,邻接矩阵形式,复杂度为O(n^2) * 求出源beg到所有点的最短路径,传入图的顶点数和邻接矩阵cost[][] * 返回各点的最短路径lowcost[],路径pre[],pre[i]记录beg到i路径上的父节点,pre[beg] = -1 * 可更改路径权类型,但是权值必须为非负,下标0~n-1 */
const int MAXN = 1010;
const int INF = 0x3f3f3f3f; // 表示无穷
bool vis[MAXN];
int pre[MAXN];
void Dijkstra(int cost[][MAXN], int lowcost[], int n, int beg)
{
for (int i = 0; i < n; i++)
{
lowcost[i] = INF;
vis[i] = false;
pre[i] = -1;
}
lowcost[beg] = 0;
for (int j = 0; j < n; j++)
{
int k = -1;
int min = INF;
for (int i = 0; i < n; i++)
{
if (!vis[i] && lowcost[i] < min)
{
min = lowcost[i];
k = i;
}
}
if (k == -1)
{
break;
}
vis[k] = true;
for (int i = 0; i < n; i++)
{
if (!vis[i] && lowcost[k] + cost[k][i] < lowcost[i])
{
lowcost[i] = lowcost[k] + cost[k][i];
pre[i] = k;
}
}
}
}
int cost[MAXN][MAXN];
int lowcost[MAXN];
int paths[MAXN];
int dfs(int s, int n)
{
if (paths[s]) // 记忆化搜索
{
return paths[s];
}
if (s == 1)
{
return 1; // 到达终点
}
int count = 0;
for (int i = 0; i < n; i++)
{
if (cost[s][i] != INF && lowcost[i] < lowcost[s])
{
count += dfs(i, n);
}
}
paths[s] = count;
return paths[s];
}
int main(int argc, const char * argv[])
{
int N, M;
while (cin >> N, N != 0)
{
cin >> M;
memset(cost, 0x3f, sizeof(cost));
memset(paths, 0, sizeof(paths));
int u, v, w;
for (int i = 0; i < M; i++)
{
scanf("%d%d%d", &u, &v, &w);
u--;
v--;
if (w < cost[u][v])
{
cost[u][v] = cost[v][u] = w;
}
}
Dijkstra(cost, lowcost, N, 1);
int count = dfs(0, N);
cout << count << '\n';
}
return 0;
}