动态树
参考题目链接:
HDU 4010 Query on The Trees
/* * 切割、合并子树,路径上所有点的点权增加一个值,查询路径上点权的最大值 * 动态维护一组森林,要求支持一下操作: * link(a,b): 如果a,b不在同一颗子树中,则通过在a,b之间连边的方式,连接这两颗子树 * cut(a,b): 如果a,b在同一颗子树中,且a!=b,则将a视为这颗子树的根以后,切断b与其父亲结点的连接 * ADD(a,b,w): 如果a,b在同一颗子树中,则将a,b之间路径上所有点的点权增加w * query(a,b): 如果a,b在同一颗子树中,返回a,b之间路径上点权的最大值 */
const int MAXN = 300010;
int ch[MAXN][2], pre[MAXN], key[MAXN];
int add[MAXN], rev[MAXN], Max[MAXN];
bool rt[MAXN];
void Update_Add(int r, int d)
{
if (!r)
{
return;
}
key[r] += d;
add[r] += d;
Max[r] += d;
return ;
}
void Update_Rev(int r)
{
if (!r)
{
return ;
}
swap(ch[r][0], ch[r][1]);
rev[r] ^= 1;
return ;
}
void push_down(int r)
{
if (add[r])
{
Update_Add(ch[r][0], add[r]);
Update_Add(ch[r][1], add[r]);
add[r] = 0;
}
if (rev[r])
{
Update_Rev(ch[r][0]);
Update_Rev(ch[r][1]);
rev[r] = 0;
}
return ;
}
void push_up(int r)
{
Max[r] = max(max(Max[ch[r][0]], Max[ch[r][1]]), key[r]);
return ;
}
void Rotate(int x)
{
int y = pre[x], kind = ch[y][1] == x;
ch[y][kind] = ch[x][!kind];
pre[ch[y][kind]] = y;
pre[x] = pre[y];
pre[y] = x;
ch[x][!kind] = y;
if (rt[y])
{
rt[y] = false, rt[x] = true;
}
else
{
ch[pre[x]][ch[pre[x]][1] == y] = x;
}
push_up(y);
}
// P函数先将根结点到r的路径上所有的结点的标记逐级下放
void P(int r)
{
if (!rt[r])P(pre[r]);
{
push_down(r);
}
return ;
}
void Splay(int r)
{
P(r);
while (!rt[r])
{
int f = pre[r], ff = pre[f];
if (rt[f])
{
Rotate(r);
}
else if ((ch[ff][1] == f) == (ch[f][1] == r))
{
Rotate(f), Rotate(r);
}
else
{
Rotate(r), Rotate(r);
}
}
push_up(r);
return ;
}
int Access(int x)
{
int y = 0;
for ( ; x; x = pre[y = x])
{
Splay(x);
rt[ch[x][1]] = true, rt[ch[x][1] = y] = false;
push_up(x);
}
return y;
}
// 判断是否是同根(真实的树,非splay)
bool judge(int u, int v)
{
while (pre[u])
{
u = pre[u];
}
while(pre[v])
{
v = pre[v];
}
return u == v;
}
// 使r成为它所在的树的根
void mroot(int r)
{
Access(r);
Splay(r);
Update_Rev(r);
return ;
}
// 调用后u是原来u和v的lca,v和ch[u][1]分别存着lca的2个儿子
// (原来u和v所在的2颗子树)
void lca(int &u, int &v)
{
Access(v), v = 0;
while(u)
{
Splay(u);
if (!pre[u])
{
return ;
}
rt[ch[u][1]] = true;
rt[ch[u][1] = v] = false;
push_up(u);
u = pre[v = u];
}
return ;
}
void link(int u, int v)
{
if (judge(u, v))
{
puts("-1");
return ;
}
mroot(u);
pre[u] = v;
return ;
}
// 使u成为u所在树的根,并且v和它父亲的边断开
void cut(int u, int v)
{
if (u == v || !judge(u, v))
{
puts("-1");
return ;
}
mroot(u);
Splay(v);
pre[ch[v][0]] = pre[v];
pre[v] = 0;
rt[ch[v][0]] = true;
ch[v][0] = 0;
push_up(v);
return ;
}
void ADD(int u, int v, int w)
{
if (!judge(u, v))
{
puts("-1");
return ;
}
lca(u, v);
Update_Add(ch[u][1], w);
Update_Add(v, w);
key[u] += w;
push_up(u);
return ;
}
void query(int u, int v)
{
if (!judge(u, v))
{
puts("-1");
return ;
}
lca(u, v);
printf("%d\n", max(max(Max[v], Max[ch[u][1]]), key[u]));
return ;
}
struct Edge
{
int to, next;
} edge[MAXN * 2];
int head[MAXN], tot;
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
return ;
}
void dfs(int u)
{
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (pre[v] != 0)
{
continue;
}
pre[v] = u;
dfs(v);
}
return ;
}
int main()
{
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
int n, q, u, v;
while (scanf("%d", &n) == 1)
{
tot = 0;
for (int i = 0; i <= n; i++)
{
head[i] = -1;
pre[i] = 0;
ch[i][0] = ch[i][1] = 0;
rev[i] = 0;
add[i] = 0;
rt[i] = true;
}
Max[0] = -2000000000;
for (int i = 1; i < n; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
for (int i = 1; i <= n; i++)
{
scanf("%d", &key[i]);
Max[i] = key[i];
}
scanf("%d", &q);
pre[1] = -1;
dfs(1);
pre[1] = 0;
int op;
while (q--)
{
scanf("%d", &op);
if (op == 1)
{
int x, y;
scanf("%d%d", &x, &y);
link(x, y);
}
else if (op == 2)
{
int x, y;
scanf("%d%d",&x, &y);
cut(x, y);
}
else if (op == 3)
{
int w, x, y;
scanf("%d%d%d", &w, &x, &y);
ADD(x, y, w);
}
else
{
int x, y;
scanf("%d%d", &x, &y);
query(x, y);
}
}
printf("\n");
}
return 0;
}