Leetcode-79. 单词搜索
给定一个二维网格和一个单词,找出该单词是否存在于网格中。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例:
board =
[
['A','B','C','E'],
['S','F','C','S'],
['A','D','E','E']
]
给定 word = "ABCCED", 返回 true.
给定 word = "SEE", 返回 true.
给定 word = "ABCB", 返回 false.
解法:dfs回溯,加上使用数组记录走过的位置,时间复杂度O(N)
- Java
class Solution {
public boolean exist(char[][] board, String word) {
if (word==null) return true;
boolean[][] visited = new boolean[board.length][board[0].length];
for (int i=0;i<board.length;i++) {
for (int j=0;j<board[0].length;j++) {
if (board[i][j]==word.charAt(0) && this.search(board, word, i, j, 0, visited)) {
return true;
}
}
}
return false;
}
public boolean search(char[][] board, String word, int i, int j, int index, boolean[][] visited) {
if (index>=word.length()) return true;
if (i<0 || i>=board.length || j<0 || j>=board[0].length || board[i][j]!=word.charAt(index) || visited[i][j]) {
return false;
}
visited[i][j] = true;
if (this.search(board,word,i-1,j,index+1,visited) ||
this.search(board,word,i,j+1,index+1,visited) ||
this.search(board,word,i+1,j,index+1,visited) ||
this.search(board,word,i,j-1,index+1,visited) )
return true;
visited[i][j] = false;
return false;
}
}
- Python
class Solution:
def exist(self, board, word):
if not board:
return False
for i in range(len(board)):
for j in range(len(board[0])):
if self.dfs(board, i, j, word):
return True
return False
# check whether can find word, start at (i,j) position
def dfs(self, board, i, j, word):
if len(word) == 0: # all the characters are checked
return True
if i<0 or i>=len(board) or j<0 or j>=len(board[0]) or word[0]!=board[i][j]:
return False
tmp = board[i][j] # first character is found, check the remaining part
board[i][j] = "#" # avoid visit agian
# check whether can find "word" along one direction
res = self.dfs(board, i+1, j, word[1:]) or self.dfs(board, i-1, j, word[1:]) \
or self.dfs(board, i, j+1, word[1:]) or self.dfs(board, i, j-1, word[1:])
board[i][j] = tmp
return res
Leetcode-212. 单词搜索 II
给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在二维网格和字典中出现的单词。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。
示例:
输入:
words = ["oath","pea","eat","rain"] and board =
[
['o','a','a','n'],
['e','t','a','e'],
['i','h','k','r'],
['i','f','l','v']
]
输出: ["eat","oath"]
说明:
你可以假设所有输入都由小写字母 a-z 组成。
提示:
- 你需要优化回溯算法以通过更大数据量的测试。你能否早点停止回溯?
- 如果当前单词不存在于所有单词的前缀中,则可以立即停止回溯。什么样的数据结构可以有效地执行这样的操作?散列表是否可行?为什么? 前缀树如何?如果你想学习如何实现一个基本的前缀树,请先查看这个问题: 实现Trie(前缀树)。
解法:1. 与上题同解法,使用dfs。2. 使用Trie,先把所有字符放在Trie中
- Java
dfs
class Solution {
public List<String> findWords(char[][] board, String[] words) {
List<String> res = new ArrayList<>();
for (String word:words) {
if (this.exist(board,word)) {
res.add(word);
}
}
return res;
}
public boolean exist(char[][] board, String word) {
if (word==null) return true;
boolean[][] visited = new boolean[board.length][board[0].length];
for (int i=0;i<board.length;i++) {
for (int j=0;j<board[0].length;j++) {
if (board[i][j]==word.charAt(0) && this.search(board, word, i, j, 0, visited)) {
return true;
}
}
}
return false;
}
public boolean search(char[][] board, String word, int i, int j, int index, boolean[][] visited) {
if (index>=word.length()) return true;
if (i<0 || i>=board.length || j<0 || j>=board[0].length || board[i][j]!=word.charAt(index) || visited[i][j]) {
return false;
}
visited[i][j] = true;
if (this.search(board,word,i-1,j,index+1,visited) ||
this.search(board,word,i,j+1,index+1,visited) ||
this.search(board,word,i+1,j,index+1,visited) ||
this.search(board,word,i,j-1,index+1,visited) )
return true;
visited[i][j] = false;
return false;
}
}
Trie+dfs,先按照上一节中的代码建立Trie树,在往里添加,区别就在于比较word的方式,一个是一位一位的比,一个是放在树里面用前缀来比。
class TrieNode {
public char val;
public TrieNode[] children = new TrieNode[26];
public boolean isWord;
public TrieNode(char c) {
this.val = c;
}
}
class Trie {
public TrieNode root = new TrieNode(' ');
public void insert(String word) {
TrieNode node = root;
for (int i=0;i<word.length();i++) {
char c = word.charAt(i);
if (node.children[c-'a']==null) {
node.children[c-'a'] = new TrieNode(c);
}
node = node.children[c-'a'];
}
node.isWord = true;
}
public boolean search(String word) {
TrieNode node = root;
for (int i=0;i<word.length();i++) {
char c = word.charAt(i);
if (node.children[c-'a']==null) return false;
node = node.children[c-'a'];
}
return node.isWord;
}
public boolean startsWith(String prefix) {
TrieNode node = root;
for (int i=0;i<prefix.length();i++) {
char c = prefix.charAt(i);
if (node.children[c-'a']==null) return false;
node = node.children[c-'a'];
}
return true;
}
}
class Solution {
public Set<String> set = new HashSet<>();
public List<String> findWords(char[][] board, String[] words) {
Trie trie = new Trie();
for (String word:words) {
trie.insert(word);
}
int m = board.length, n = board[0].length;
boolean[][] visited = new boolean[m][n];
for (int i=0;i<m;i++) {
for (int j=0;j<n;j++) {
this.dfs(board, visited, i, j, "", trie);
}
}
return new ArrayList<String>(set);
}
public void dfs(char[][] board, boolean[][] visited, int i, int j, String str, Trie trie) {
if (i<0 || i>=board.length || j<0 || j>=board[0].length || visited[i][j])
return;
str += board[i][j];
if (!trie.startsWith(str))
return;
if (trie.search(str)) {
this.set.add(str);
// return; // 这里不应该return,例如aaa,如果还有aaab本来也能找到,但以aaa为前缀,aaa已经return了,这个就不会被添加
}
visited[i][j] = true;
this.dfs(board, visited, i-1, j, str, trie);
this.dfs(board, visited, i, j+1, str, trie);
this.dfs(board, visited, i+1, j, str, trie);
this.dfs(board, visited, i, j-1, str, trie);
visited[i][j] = false;
}
}
- Python
class TrieNode():
def __init__(self):
self.children = collections.defaultdict(TrieNode)
self.isWord = False
class Trie():
def __init__(self):
self.root = TrieNode()
def insert(self, word):
node = self.root
for w in word:
node = node.children[w]
node.isWord = True
def search(self, word):
node = self.root
for w in word:
node = node.children.get(w)
if not node:
return False
return node.isWord
class Solution(object):
def findWords(self, board, words):
res = []
trie = Trie()
node = trie.root
for w in words:
trie.insert(w)
for i in range(len(board)):
for j in range(len(board[0])):
self.dfs(board, node, i, j, "", res)
return res
def dfs(self, board, node, i, j, path, res):
if node.isWord:
res.append(path)
node.isWord = False
if i < 0 or i >= len(board) or j < 0 or j >= len(board[0]):
return
tmp = board[i][j]
node = node.children.get(tmp)
if not node:
return
board[i][j] = "#"
self.dfs(board, node, i+1, j, path+tmp, res)
self.dfs(board, node, i-1, j, path+tmp, res)
self.dfs(board, node, i, j-1, path+tmp, res)
self.dfs(board, node, i, j+1, path+tmp, res)
board[i][j] = tmp