正常实现
Input : [1,2,3,4,5]
key : 3
return the index : 2
public int binarySearch(int[] nums, int key) {
int l = 0, h = nums.length - 1;
while (l <= h) {
int m = l + (h - l) / 2;
if (nums[m] == key) {
return m;
} else if (nums[m] > key) {
h = m - 1;
} else {
l = m + 1;
}
}
return -1;
}
时间复杂度
二分查找也称为折半查找,每次都能将查找区间减半,这种折半特性的算法时间复杂度为 O(logN)。
m 计算
有两种计算中值 m 的方式:
- m = (l + h) / 2
- m = l + (h - l) / 2
l + h 可能出现加法溢出,也就是说加法的结果大于整型能够表示的范围。但是 l 和 h 都为正数,因此 h - l 不会出现加法溢出问题。所以,最好使用第二种计算法方法。
未成功查找的返回值
循环退出时如果仍然没有查找到 key,那么表示查找失败。可以有两种返回值:
-1:以一个错误码表示没有查找到 key
l:将 key 插入到 nums 中的正确位置
变种
二分查找可以有很多变种,实现变种要注意边界值的判断。例如在一个有重复元素的数组中查找 key 的最左位置的实现如下:
public int binarySearch(int[] nums, int key) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] >= key) {
h = m;
} else {
l = m + 1;
}
}
return l;
}
该实现和正常实现有以下不同:
- h 的赋值表达式为 h = m
- 循环条件为 l < h
- 最后返回 l 而不是 -1
在 nums[m] >= key 的情况下,可以推导出最左 key 位于 [l, m] 区间中,这是一个闭区间。h 的赋值表达式为 h = m,因为 m 位置也可能是解。
在 h 的赋值表达式为 h = m 的情况下,如果循环条件为 l <= h,那么会出现循环无法退出的情况,因此循环条件只能是 l < h。以下演示了循环条件为 l <= h 时循环无法退出的情况:
nums = {0, 1, 2}, key = 1
l m h
0 1 2 nums[m] >= key
0 0 1 nums[m] < key
1 1 1 nums[m] >= key
1 1 1 nums[m] >= key
...
当循环体退出时,不表示没有查找到 key,因此最后返回的结果不应该为 -1。为了验证有没有查找到,需要在调用端判断一下返回位置上的值和 key 是否相等。
1. 求开方
Leetcode-69. x 的平方根
实现 int sqrt(int x) 函数。
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
示例 1:
输入: 4
输出: 2
示例 2:
输入: 8
输出: 2
说明: 8 的平方根是 2.82842...,
由于返回类型是整数,小数部分将被舍去。
解法:
- Java
class Solution {
public int mySqrt(int x) {
if (x<=1) return x;
int l = 1, h = x;
while (l<h) {
int m = l + (h-l)/2;
int sqrt = x/m;
if (sqrt==m) return m;
else if (sqrt>m) l = m+1;
else h = m;
}
return l-1;
}
}
public int mySqrt(int x) {
if (x <= 1) {
return x;
}
int l = 1, h = x;
while (l <= h) {
int mid = l + (h - l) / 2;
int sqrt = x / mid;
if (sqrt == mid) {
return mid;
} else if (mid > sqrt) {
h = mid - 1;
} else {
l = mid + 1;
}
}
return h;
}
2. 大于给定元素的最小元素
Leetcode-744. 寻找比目标字母大的最小字母
给定一个只包含小写字母的有序数组letters 和一个目标字母 target,寻找有序数组里面比目标字母大的最小字母。
数组里字母的顺序是循环的。举个例子,如果目标字母target = ‘z’ 并且有序数组为 letters = [‘a’, ‘b’],则答案返回 ‘a’。
示例:
输入:
letters = ["c", "f", "j"]
target = "a"
输出: "c"
输入:
letters = ["c", "f", "j"]
target = "c"
输出: "f"
输入:
letters = ["c", "f", "j"]
target = "d"
输出: "f"
输入:
letters = ["c", "f", "j"]
target = "g"
输出: "j"
输入:
letters = ["c", "f", "j"]
target = "j"
输出: "c"
输入:
letters = ["c", "f", "j"]
target = "k"
输出: "c"
注:
- letters长度范围在[2, 10000]区间内。
- letters 仅由小写字母组成,最少包含两个不同的字母。
- 目标字母target 是一个小写字母。
- 如果找不到就返回第一个字符。
解法:
- Java
class Solution {
public char nextGreatestLetter(char[] letters, char target) {
int l = 0, h = letters.length-1;
while (l < h) {
int m = l + (h-l)/2;
if (letters[m] <= target) l = m+1;
else h = m;
}
return target>=letters[letters.length-1]? letters[0]: letters[l];
}
}
3. 有序数组的 Single Element
给定一个只包含整数的有序数组,每个元素都会出现两次,唯有一个数只会出现一次,找出这个数。
示例 1:
输入: [1,1,2,3,3,4,4,8,8]
输出: 2
示例 2:
输入: [3,3,7,7,10,11,11]
输出: 10
- 注意: 您的方案应该在 O(log n)时间复杂度和 O(1)空间复杂度中运行。
解法
- Java
使用位运算
class Solution {
public int singleNonDuplicate(int[] nums) {
for (int i=1;i<nums.length;i++) {
nums[i] = nums[i-1]^nums[i];
}
return nums[nums.length-1];
}
}
二分查找
要求以 O(logN) 时间复杂度进行求解,因此不能遍历数组并进行异或操作来求解,这么做的时间复杂度为 O(N)。
令 index 为 Single Element 在数组中的位置。在 index 之后,数组中原来存在的成对状态被改变。如果 m 为偶数,并且 m + 1 < index,那么 nums[m] == nums[m + 1];m + 1 >= index,那么 nums[m] != nums[m + 1]。
从上面的规律可以知道,如果 nums[m] == nums[m + 1],那么 index 所在的数组位置为 [m + 2, h],此时令 l = m + 2;如果 nums[m] != nums[m + 1],那么 index 所在的数组位置为 [l, m],此时令 h = m。
因为 h 的赋值表达式为 h = m,那么循环条件也就只能使用 l < h 这种形式。
class Solution {
public int singleNonDuplicate(int[] nums) {
int l = 0, h = nums.length-1;
while (l < h) {
int m = l + (h-l)/2;
// 保持m一直在偶数位
if (m%2==1) m--;
if (nums[m]==nums[m+1]) l = m+2;
else h = m;
}
return nums[l];
}
}
4. 第一个错误的版本
Leetcode-278. 第一个错误的版本
你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。
假设你有 n 个版本 [1, 2, …, n],你想找出导致之后所有版本出错的第一个错误的版本。
你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。
示例:
给定 n = 5,并且 version = 4 是第一个错误的版本。
调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true
所以,4 是第一个错误的版本。
解法:
- Java
public class Solution extends VersionControl {
public int firstBadVersion(int n) {
int l = 1, h = n;
while (l<h) {
int m = l + (h-l)/2;
if (isBadVersion(m) == false) l = m+1;
else h = m;
}
return l;
}
}
5. 旋转数组的最小数字
Leetcode-153. 寻找旋转排序数组中的最小值
假设按照升序排序的数组在预先未知的某个点上进行了旋转。
( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。
请找出其中最小的元素。
你可以假设数组中不存在重复元素。
示例 1:
输入: [3,4,5,1,2]
输出: 1
示例 2:
输入: [4,5,6,7,0,1,2]
输出: 0
解法:
- Java
中间值大于最右边的值,说明最小值点在中间值的右边
class Solution {
public int findMin(int[] nums) {
int l = 0, h = nums.length-1;
while (l < h) {
int m = l + (h-l)/2;
if (nums[m]>nums[h]) l = m+1;
else h = m;
}
return nums[l];
}
}
6. 查找区间
Leetcode-34. 在排序数组中查找元素的第一个和最后一个位置
给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
你的算法时间复杂度必须是 O(log n) 级别。
如果数组中不存在目标值,返回 [-1, -1]。
示例 1:
输入: nums = [5,7,7,8,8,10], target = 8
输出: [3,4]
示例 2:
输入: nums = [5,7,7,8,8,10], target = 6
输出: [-1,-1]
解法:
- Java
可以用二分查找找出第一个位置和最后一个位置,但是寻找的方法有所不同,需要实现两个二分查找。我们将寻找 target 最后一个位置,转换成寻找 target+1 第一个位置,再往前移动一个位置。这样我们只需要实现一个二分查找代码即可。
class Solution {
public int[] searchRange(int[] nums, int target) {
int first = find(nums, target);
int last = find(nums, target+1);
if (first==nums.length || nums[first]!=target) return new int[]{
-1, -1};
return new int[]{
first, nums[last]==target? last: last-1};
}
// 找到第一个大于等于target的位置
private int find(int[] nums, int target) {
int l = 0, h = nums.length-1;
while (l<h) {
int m = l+(h-l)/2;
if (nums[m]<target) l = m+1;
else h = m;
}
return l;
}
}