Leetcode-146. LRU缓存机制

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // 返回  1
cache.put(3, 3);    // 该操作会使得密钥 2 作废
cache.get(2);       // 返回 -1 (未找到)
cache.put(4, 4);    // 该操作会使得密钥 1 作废
cache.get(1);       // 返回 -1 (未找到)
cache.get(3);       // 返回  3
cache.get(4);       // 返回  4

解法:主要是使用双向链表的思想,增加pre和next指针,删除节点,增加到开头

  • Java
class LRUCache {
   
    
    class Node{
   
      Node prev, next;
      int key, value;
      Node(int k, int v){
   
        key = k;
        value = v;
      }
    }
    
    final Node head = new Node(0, 0);
    final Node tail = new Node(0, 0);
    final Map<Integer, Node> map;
    final int capacity;
    
    public LRUCache(int capacity) {
   
        this.capacity = capacity;
        map = new HashMap(capacity);
        head.next = tail;
        tail.prev = head;
    }
    
    public int get(int key) {
   
      int res = -1;
      if(map.containsKey(key)){
   
        Node n = map.get(key);
        remove(n);
        insertToHead(n);
        res = n.value;
      }
      return res;   
    }
    
    public void put(int key, int value) {
   
      if(map.containsKey(key)){
   
        Node n = map.get(key);
        remove(n);
        n.value = value;
        insertToHead(n);
      } else {
   
        
        if(map.size() == capacity){
   
           map.remove(tail.prev.key); 
           remove(tail.prev);
        } 
        
        Node n = new Node(key, value);
        insertToHead(n);
        map.put(key, n);
      }  
    }
    
    private void remove(Node n){
   
      n.prev.next = n.next;
      n.next.prev = n.prev;
    }
    
    private void insertToHead(Node n){
   
      Node headNext = head.next;
      head.next = n;
      headNext.prev = n;
      n.prev = head;
      n.next = headNext;
    }
}

/** * Your LRUCache object will be instantiated and called as such: * LRUCache obj = new LRUCache(capacity); * int param_1 = obj.get(key); * obj.put(key,value); */
  • Python
    使用ordereddict
class LRUCache:
    def __init__(self, capacity):
        self.dic = collections.OrderedDict()
        self.remain = capacity

    def get(self, key):
        if key not in self.dic:
            return -1
        v = self.dic.pop(key) 
        self.dic[key] = v   # set key as the newest one
        return v

    def put(self, key, value):
        if key in self.dic:    
            self.dic.pop(key)
        else:
            if self.remain > 0:
                self.remain -= 1  
            else:  # self.dic is full
                self.dic.popitem(last=False) # 推出最后的元素
        self.dic[key] = value
        


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)