描述
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Python
Suppose you are given 1–n, and you want to generate all binary search trees.
How do you do it? Suppose you put number i on the root, then simply
Generate all BST on the left branch by running the same algorithm with 1–(i-1),
Generate all BST on the right branch by running the same algorithm with (i+1)–n.
Take all combinations of left branch and right branch, and that’s it for i on the root.
Then you let i go from 1 to n. And that’s it.
易懂版本,但是速度过慢,递归通病
def numTrees(self,n):
if n == 0:
return 1
if n == 1:
return 1
Result = 0
for i in range(n):
LeftTrees = self.numTrees(i)
RightTrees = self.numTrees(n - i - 1)
Result += LeftTrees * RightTrees
return Result
使用list缓存,用动态规划解决问题
class Solution:
def numTrees(self, n: int) -> int:
dp = [0 for _ in range(n+1)]
dp[0] = 1
dp[1] = 1
for root in range(2,n+1):
for left in range(0,root):
dp[root] += dp[left]*dp[root-left-1]
return dp[-1]