-
SLIC superpixels compared to state-of-the-art superpixel methods IEEE Trans. Pattern Anal. Mach. Intell., 34 (11) (2012), pp. 2274-2282 【PDF】 【code】标签:Unsupervised methods,Superpixel
-
SEEDS: superpixels extracted via energy-driven sampling, in: ECCV, 2012.【PDF】 【code】 【github】标签:Unsupervised methods,Superpixel
-
P. Kohli, A. Osokin, S. Jegelka, A principled deep random field model for image segmentation, in: CVPR, 2013.【PDF】 【code】 【作者主页】 标签:Weakly-/semi-supervised methods,Label propagation approaches
-
H. Zhu, J. Zheng, J. Cai, N. Magnenat-Thalmann Object-level image segmentation using low level cues
IEEE Trans. Image Process., 22 (10) (2013), pp. 4019-4027 【PDF】 标签:Weakly-/semi-supervised methods,Label propagation approaches
-
P. Krähenbühl, V. Koltun, Geodesic object proposals, in: ECCV, 2014. 【PDF】 【code】 【作者主页】 【project page】标签:Fully-supervised methods,Object proposals,Class-agnostic object proposals
-
P.A. Arbeláez, J. Pont-Tuset, J.T. Barron, F. Marqués, J. Malik, Multiscale combinatorial grouping, in: CVPR, 2014.【PDF】 【project page】标签:Fully-supervised methods,Object proposals,Class-agnostic object proposals
-
Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation
TPAMI 2016 【PDF】【project page】标签:Fully-supervised methods,Object proposals,Class-agnostic object proposals -
S. Manen, M. Guillaumin, L.J.V. Gool, Prime object proposals with randomized prim’s algorithm, in: ICCV, 2013.【PDF】 【code】标签:Fully-supervised methods,Object proposals,Class-agnostic object proposals Generic object detection -
J. Tighe, S. Lazebnik, Finding things: image parsing with regions and per-exemplar detectors, in: CVPR, 2013.【PDF】 【project page】 【论文笔记】标签: Fully-supervised methods,Semantic image parsing,Combination of ‘Thing’ and ‘Stuff’ ,Non-parametric approaches
-
J. Tighe, S. LazebnikSuperparsing – scalable nonparametric image parsing with superpixels
Int. J. Comput. Vision, 101 (2) (2013), pp. 329-349 【PDF】 【project page】 【论文笔记】标签: Fully-supervised methods,Semantic image parsing,Combination of ‘Thing’ and ‘Stuff’ ,Non-parametric approaches
-
S. Zheng, M. Cheng, J. Warrell, P. Sturgess, V. Vineet, C. Rother, P.H.S. Torr, Dense semantic image segmentation with objects and attributes, in: CVPR, 2014.【PDF】 【project page】
-
B. Hariharan, P.A. Arbeláez, R.B. Girshick, J. Malik, Simultaneous detection and segmentation, in: ECCV, 2014.【PDF】 【project page】用了R-CNN -
. Dai, K. He, J. Sun,Convolutional feature masking for joint object and stuff segmentation, in: CVPR, 2015.【PDF】【code】
-
A.C. Müller, S. Behnke Learning depth-sensitive conditional random fields for semantic segmentation of RGB-D images (ICRA) (2014), pp. 6232-6237 【PDF】 标签:Methods using CRF,Plain CRF
-
S.H. Khan, M. Bennamoun, F. Sohel, R. TogneriGeometry driven semantic labeling of indoor scenes
Proceedings of the European Conference on Computer Vision (2014), pp. 679-694【PDF】 标签:Methods using CRF,Higher order CRF
-
P. Krähenbühl, V. Koltun Efficient inference in fully connected CRFs with gaussian edge potentials
Proceedings of the Advances in Neural Information Processing Systems(2011), pp. 109-117【PDF】 【project page】 github标签:Contextual models,Inference and energy minimization
-
M.P. Kumar, H. Turki, D. Preston, D. Koller Parameter estimation and energy minimization for region-based semantic segmentation
IEEE Trans. Pattern Anal. Mach. Intell., 37 (7) (2015), pp. 1373-1386 【PDF】 标签:contextual model based scene labeling methods
-
S. Gould, Zhao J., He X., Zhang Y.Superpixel graph label transfer with learned distance metric
Proceedings of the European Conference on Computer Vision (2014), pp. 632-647 【PDF】 【project page】标签:Non-parametric methods
参考文献:
- Beyond pixels: A comprehensive survey from bottom-up to semantic image segmentation and cosegmentation
- Methods and datasets on semantic segmentation: A review