Leetcode-104. 二叉树的最大深度
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回它的最大深度 3 。
解法:介绍两种算法,BFS和DFS(使用Recursion实现)
BFS
- Java
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */
class Solution {
public int maxDepth(TreeNode root) {
if(root==null) return 0;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int size = 0;
int level = 0;
while(!queue.isEmpty()){
size = queue.size();
for(int i=0;i<size;i++){
TreeNode node = queue.poll();
if(node.left!=null) queue.offer(node.left);
if(node.right!=null) queue.offer(node.right);
}
level++;
}
return level;
}
}
- Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root: return 0
queue = []
size, level = 0, 0
queue.append(root)
while(queue):
size = len(queue)
for _ in range(size):
node = queue.pop(0)
if node.left: queue.append(node.left)
if node.right: queue.append(node.right)
level += 1
return level
DFS
- Java
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */
class Solution {
public int maxDepth(TreeNode root) {
return root==null ? 0 : 1+Math.max(this.maxDepth(root.left),this.maxDepth(root.right));
}
}
- Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root: return 0
return 1+max(self.maxDepth(root.left),self.maxDepth(root.right))
Leetcode-111. 二叉树的最小深度
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回它的最小深度 2.
解法:类似上题
BFS
- Java
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */
class Solution {
public int minDepth(TreeNode root) {
if(root==null) return 0;
int size = 0;
int level = 1;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(queue!=null){
size = queue.size();
for(int i=0;i<size;i++){
TreeNode node = queue.poll();
if(node.left==null && node.right==null) return level;
if(node.left != null) queue.offer(node.left);
if(node.right != null) queue.offer(node.right);
}
level++;
}
return level;
}
}
- Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def minDepth(self, root: TreeNode) -> int:
if not root: return 0
size , level = 0, 1
queue = []
queue.append(root)
while(queue):
size = len(queue)
for _ in range(size):
node = queue.pop(0)
if not node.left and not node.right: return level
if node.left: queue.append(node.left)
if node.right: queue.append(node.right)
level += 1
return level
DFS
- Java
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */
class Solution {
public int minDepth(TreeNode root) {
if(root==null) return 0;
int minLeft = this.minDepth(root.left);
int minRight = this.minDepth(root.right);
return (minLeft==0 || minRight==0)? minLeft+minRight+1: 1+Math.min(minLeft,minRight);
}
}
- Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def minDepth(self, root: TreeNode) -> int:
if not root: return 0
minLeft = self.minDepth(root.left)
minRight = self.minDepth(root.right)
if minLeft==0 or minRight==0:
return minLeft+minRight+1
else:
return 1+min(minLeft,minRight)