单个实现json_to_dataset方法:
在labelme的安装目录D:\files\anaconda\envs\yolo\Lib\site-packages\labelme\cli 下可以看到一个json_to_dataset.py,运行它即可。
批量实现json_to_dataset方法:
但是这样单个实现太浪费时间了哈,于是可以改进一下json_to_dataset.py文件,就可以批量转换了哈
将json_to_dataset的代码替换为:
import argparse
import json
import os
import os.path as osp
import warnings
import PIL.Image
import yaml
from labelme import utils
import base64
import numpy as np
from skimage import img_as_ubyte
def main():
warnings.warn("This script is aimed to demonstrate how to convert the\n"
"JSON file to a single image dataset, and not to handle\n"
"multiple JSON files to generate a real-use dataset.")
parser = argparse.ArgumentParser()
parser.add_argument('json_file')
parser.add_argument('-o', '--out', default=None)
args = parser.parse_args()
json_file = args.json_file
count = os.listdir(json_file)
for i in range(0, len(count)):
path = os.path.join(json_file, count[i])
if os.path.isfile(path):
data = json.load(open(path))
##############################
#save_diretory
out_dir1 = osp.basename(path).replace('.', '_')
save_file_name = out_dir1
out_dir1 = osp.join(osp.dirname(path), out_dir1)
if not osp.exists(json_file + '\\' + 'labelme_json'):
os.mkdir(json_file + '\\' + 'labelme_json')
labelme_json = json_file + '\\' + 'labelme_json'
out_dir2 = labelme_json + '\\' + save_file_name
if not osp.exists(out_dir2):
os.mkdir(out_dir2)
#########################
if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in data['shapes']:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
# label_values must be dense
label_values, label_names = [], []
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
label_values.append(lv)
label_names.append(ln)
assert label_values == list(range(len(label_values)))
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
captions = ['{}: {}'.format(lv, ln)
for ln, lv in label_name_to_value.items()]
lbl_viz = utils.draw_label(lbl, img, captions)
PIL.Image.fromarray(img).save(out_dir2+'\\'+save_file_name+'_img.png')
#PIL.Image.fromarray(lbl).save(osp.join(out_dir2, 'label.png'))
utils.lblsave(osp.join(out_dir2, save_file_name+'_label.png'), lbl)
PIL.Image.fromarray(lbl_viz).save(out_dir2+'\\'+save_file_name+
'_label_viz.png')
with open(osp.join(out_dir2, 'label_names.txt'), 'w') as f:
for lbl_name in label_names:
f.write(lbl_name + '\n')
warnings.warn('info.yaml is being replaced by label_names.txt')
info = dict(label_names=label_names)
with open(osp.join(out_dir2, 'info.yaml'), 'w') as f:
yaml.safe_dump(info, f, default_flow_style=False)
#save png to another directory
if not osp.exists(json_file + '\\' + 'mask_png'):
os.mkdir(json_file + '\\' + 'mask_png')
mask_save2png_path = json_file + '\\' + 'mask_png'
utils.lblsave(osp.join(mask_save2png_path, save_file_name+'_label.png'), lbl)
print('Saved to: %s' % out_dir2)
if __name__ == '__main__':
main()
小插曲:我运行了以后发现报错了:
module 'labelme.utils' has no attribute 'draw_label',这个我查了一下解决方案:
将labelme的版本降低就可以了,
pip install labelme==3.16.2
如果都没问题的话,跳到json_to_dataset路径下,
执行
python json_to_dataset.py D:\mydata\project\seamdata\annotations
(后面的路径是json文件存放的位置哈)
成功:
然后我们就在json文件路径下看到转化好的照片了!