题面:
题意:
给定 a,b
求解:
dc−fe=ba
其中
d<b and f<b
1≤c,e≤4e12
如果无解输出 −1 −1 −1 −1
题解1:
通分后有 dfcf−ed=ba,那么有 k∗df=b,k∗(df−ed)=a
我们猜测 d,f为 b的因子,然后用扩展exgcd求解。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<set>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
//#define len(x) (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=998244353;
const double eps=1e-1;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=200100;
const int maxp=1100;
const int maxm=100100;
const int up=100000;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1,y=0;
return a;
}
ll d=exgcd(b,a%b,x,y);
ll z=x;
x=y;
y=z-y*(a/b);
return d;
}
bool get(ll a,ll b,ll c,ll &x,ll &y)
{
ll d=exgcd(a,b,x,y);
if(c%d) return false;
x=x*c/d,y=y*c/d;
return true;
}
int cnt;
ll fac[maxn];
void fi(int n)
{
cnt=0;
if(n==1) return ;
for(int i=1;i*i<=n;i++)
{
if(n%i) continue;
fac[++cnt]=i;
if(i!=1&&i*i!=n) fac[++cnt]=n/i;
}
}
bool so(void)
{
ll a,b,now,k,x,y,aa;
scanf("%lld%lld",&a,&b);
fi(b);
for(int i=1;i<=cnt;i++)
{
for(int j=1;j<=cnt;j++)
{
now=1ll*fac[i]*fac[j];
if(now%b!=0&&b%now!=0) continue;
if(now<b)
{
k=b/now;
if(a%k) continue;
aa=a/k;
if(get(fac[i],-fac[j],aa,x,y))
{
ll cm=abs(min(0ll,min((x-fac[j])/fac[j],(y-fac[i])/fac[i])));
x+=fac[j]*cm;
y+=fac[i]*cm;
printf("%lld %lld %lld %lld\n",x,fac[j],y,fac[i]);
return true;
}
}
else
{
k=now/b;
aa=a*k;
if(get(fac[i],-fac[j],aa,x,y))
{
ll cm=abs(min(0ll,min((x-fac[j])/fac[j],(y-fac[i])/fac[i])));
x+=fac[j]*cm;
y+=fac[i]*cm;
printf("%lld %lld %lld %lld\n",x,fac[j],y,fac[i]);
return true;
}
}
}
}
return false;
}
int main(void)
{
int t;
scanf("%d",&t);
while(t--)
{
if(!so()) printf("-1 -1 -1 -1\n");
}
return 0;
}
题解2:官方题解
①、若 a,b不互质:
我们令 g为 a,b的一个大于 1 的公因数,那么 ga+1,gb,1,gb就是答案。
②、如果a,b互质且b的相异质因数超过1个:
先找到 d,f,其中 d∗f=b and gcd(d,f)=1
通分后得到 dfcf−ed=ba,也就是找到 c 和 e 满足 c∗f−e∗d=a,由于 gcd(d,f)=1,该二元一次不定方程一定有解(exgcd)
③、如果a,b互质且b的相异质因数不超过1个:
无解。
假设 b=pk,由于a,b互质,而且 dc−fe化简后必须为 ba,但 d,f的质因数分解中 p 的指数都小于k(因为 d<b,f<b), lcm(d,f)<b且lcm(d,f)∣b,所以不能化为 ba的形式。
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<set>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
//#define len(x) (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=998244353;
const double eps=1e-1;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=2000100;
const int maxp=1100;
const int maxm=500100;
const int up=100000;
int prime[maxn],cnt=0;
int ha[maxn];
void Prime(void)
{
ha[1]=1;
for(int i=2;i<maxn;i++)
{
if(!ha[i])
{
ha[i]=i;
prime[++cnt]=i;
}
for(int j=1;j<=cnt&&prime[j]*i<maxn;j++)
{
ha[i*prime[j]]=prime[j];
if(i%prime[j]==0) break;
}
}
}
ll gcd(ll a,ll b)
{
if(b==0) return a;
return gcd(b,a%b);
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1,y=0;
return a;
}
ll d=exgcd(b,a%b,x,y);
ll z=x;
x=y;
y=z-y*(a/b);
return d;
}
bool get(ll a,ll b,ll c,ll &x,ll &y)
{
ll d=exgcd(a,b,x,y);
if(c%d) return false;
x=x*c/d,y=y*c/d;
return true;
}
int main(void)
{
Prime();
int tt;
scanf("%d",&tt);
ll a,b;
while(tt--)
{
scanf("%lld%lld",&a,&b);
ll gc=gcd(a,b);
a/=gc,b/=gc;
if(gc!=1)
{
printf("%lld %lld %lld %lld\n",a+1,b,1ll,b);
continue;
}
ll d=1,f=b;
while(f>1&&f%ha[b]==0)
{
d*=ha[b];
f/=ha[b];
}
if(f==1)
{
printf("-1 -1 -1 -1\n");
continue;
}
ll c,e;
get(f,-d,a,c,e);
ll k=abs(min(0ll,min((c-d)/d,(e-f)/f)));
c+=k*d;
e+=k*f;
printf("%lld %lld %lld %lld\n",c,d,e,f);
}
return 0;
}