题目链接

题面:

题意:
给定 a , b a,b a,b
求解:
c d e f = a b \frac{c}{d}-\frac{e}{f}=\frac{a}{b} dcfe=ba

其中
d < b <mtext>   </mtext> a n d <mtext>   </mtext> f < b d<b\space and\space f<b d<b and f<b
1 c , e 4 e 12 1\le c,e\le4e12 1c,e4e12

如果无解输出 1 <mtext>   </mtext> 1 <mtext>   </mtext> 1 <mtext>   </mtext> 1 -1\space-1\space -1\space -1 1 1 1 1

题解1:
通分后有 c f e d d f = a b \frac{cf-ed}{df}=\frac{a}{b} dfcfed=ba,那么有 k d f = b , k ( d f e d ) = a k*df=b,k*(df-ed)=a kdf=b,k(dfed)=a
我们猜测 d , f d,f d,f b b b的因子,然后用扩展exgcd求解。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<set>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
//#define len(x) (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
using namespace std;

const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=998244353;
const double eps=1e-1;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=200100;
const int maxp=1100;
const int maxm=100100;
const int up=100000;

ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    ll d=exgcd(b,a%b,x,y);
    ll z=x;
    x=y;
    y=z-y*(a/b);
    return d;
}

bool get(ll a,ll b,ll c,ll &x,ll &y)
{
    ll d=exgcd(a,b,x,y);
    if(c%d) return false;
    x=x*c/d,y=y*c/d;
    return true;
}

int cnt;
ll fac[maxn];

void fi(int n)
{
    cnt=0;
    if(n==1) return ;
    for(int i=1;i*i<=n;i++)
    {
        if(n%i) continue;
        fac[++cnt]=i;
        if(i!=1&&i*i!=n) fac[++cnt]=n/i;
    }
}

bool so(void)
{
    ll a,b,now,k,x,y,aa;
    scanf("%lld%lld",&a,&b);
    fi(b);
    for(int i=1;i<=cnt;i++)
    {
        for(int j=1;j<=cnt;j++)
        {
            now=1ll*fac[i]*fac[j];
            if(now%b!=0&&b%now!=0) continue;
            if(now<b)
            {
                k=b/now;
                if(a%k) continue;
                aa=a/k;
                if(get(fac[i],-fac[j],aa,x,y))
                {
                    ll cm=abs(min(0ll,min((x-fac[j])/fac[j],(y-fac[i])/fac[i])));
                    x+=fac[j]*cm;
                    y+=fac[i]*cm;
                    printf("%lld %lld %lld %lld\n",x,fac[j],y,fac[i]);
                    return true;
                }
            }
            else
            {
                k=now/b;
                aa=a*k;
                if(get(fac[i],-fac[j],aa,x,y))
                {
                    ll cm=abs(min(0ll,min((x-fac[j])/fac[j],(y-fac[i])/fac[i])));
                    x+=fac[j]*cm;
                    y+=fac[i]*cm;
                    printf("%lld %lld %lld %lld\n",x,fac[j],y,fac[i]);
                    return true;
                }
            }
        }
    }
    return false;
}

int main(void)
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        if(!so()) printf("-1 -1 -1 -1\n");
    }
    return 0;
}

题解2:官方题解
①、若 a , b a,b a,b不互质:
我们令 g g g a b a,b ab的一个大于 1 的公因数,那么 a g + 1 , b g , 1 , b g \frac{a}{g}+1,\frac{b}{g},1,\frac{b}{g} ga+1,gb,1,gb就是答案。

②、如果a,b互质且b的相异质因数超过1个:
先找到 d , f d,f d,f,其中 d f = b <mtext>   </mtext> a n d <mtext>   </mtext> g c d ( d , f ) = 1 d*f=b\space and \space gcd(d,f)=1 df=b and gcd(d,f)=1

通分后得到 c f e d d f = a b \frac{cf-ed}{df}=\frac{a}{b} dfcfed=ba,也就是找到 c 和 e 满足 c f e d = a c*f-e*d=a cfed=a,由于 g c d ( d , f ) = 1 gcd(d,f)=1 gcd(d,f)=1,该二元一次不定方程一定有解(exgcd)

③、如果a,b互质且b的相异质因数不超过1个:
无解。
假设 b = p k b=p^k b=pk,由于a,b互质,而且 c d e f \frac{c}{d}-\frac{e}{f} dcfe化简后必须为 a b \frac{a}{b} ba,但 d , f d,f d,f的质因数分解中 p p p 的指数都小于k(因为 d < b , f < b d<b,f<b d<b,f<b), l c m ( d , f ) < b l c m ( d , f ) b lcm(d,f)<b 且 lcm(d,f)|b lcm(d,f)<blcm(d,f)b,所以不能化为 a b \frac{a}{b} ba的形式。

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<set>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
//#define len(x) (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
using namespace std;

const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=998244353;
const double eps=1e-1;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=2000100;
const int maxp=1100;
const int maxm=500100;
const int up=100000;

int prime[maxn],cnt=0;
int ha[maxn];

void Prime(void)
{
    ha[1]=1;
    for(int i=2;i<maxn;i++)
    {
        if(!ha[i])
        {
            ha[i]=i;
            prime[++cnt]=i;
        }
        for(int j=1;j<=cnt&&prime[j]*i<maxn;j++)
        {
            ha[i*prime[j]]=prime[j];
            if(i%prime[j]==0) break;
        }
    }
}

ll gcd(ll a,ll b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}

ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    ll d=exgcd(b,a%b,x,y);
    ll z=x;
    x=y;
    y=z-y*(a/b);
    return d;
}

bool get(ll a,ll b,ll c,ll &x,ll &y)
{
    ll d=exgcd(a,b,x,y);
    if(c%d) return false;
    x=x*c/d,y=y*c/d;
    return true;
}

int main(void)
{
    Prime();
    int tt;
    scanf("%d",&tt);
    ll a,b;
    while(tt--)
    {
        scanf("%lld%lld",&a,&b);
        ll gc=gcd(a,b);
        a/=gc,b/=gc;
        if(gc!=1)
        {
            printf("%lld %lld %lld %lld\n",a+1,b,1ll,b);
            continue;
        }

        ll d=1,f=b;
        while(f>1&&f%ha[b]==0)
        {
            d*=ha[b];
            f/=ha[b];
        }
        if(f==1)
        {
            printf("-1 -1 -1 -1\n");
            continue;
        }
        ll c,e;
        get(f,-d,a,c,e);
        ll k=abs(min(0ll,min((c-d)/d,(e-f)/f)));
        c+=k*d;
        e+=k*f;
        printf("%lld %lld %lld %lld\n",c,d,e,f);

    }
    return 0;
}